Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 94335 by mathmax by abdo last updated on 18/May/20

calculate Σ_(n=0) ^∞  n^((−1)^n ) x^n

calculaten=0n(1)nxn

Answered by mathmax by abdo last updated on 19/May/20

s(x) =Σ_(n=0) ^∞ (2n) x^(2n)  +Σ_(n=0) ^∞ (2n+1)^(−1)  x^(2n+1)   =2 Σ_(n=0) ^∞  nx^(2n)  +Σ_(n=0) ^∞  (x^(2n+1) /(2n+1)) =h(x)+k(x)  we have Σ_(n=0) ^∞   x^n  =(1/(1−x)) ⇒Σ_(n=1) ^∞  nx^(n−1)  =(1/((1−x)^2 )) ⇒  Σ_(n=1) ^∞  nx^n  =(x/((1−x)^2 )) ⇒Σ_(n=1) ^∞  nx^(2n)  =(x^2 /((1−x^2 )^2 ))=h(x)  k(x) =Σ_(n=0) ^∞  (x^(2n+1) /(2n+1)) ⇒k^′ (x) =Σ_(n=0) ^∞  x^(2n)  =(1/(1−x^2 )) ⇒  k(x) =∫_0 ^x  (dt/(1−t^2 )) +k   (k=0) =(1/2)∫_0 ^x ((1/(1−t))+(1/(1+t)))dt  =(1/2)[ln∣((1+t)/(1−t))∣]_0 ^x  =(1/2)ln∣((1+x)/(1−x))∣ ⇒s(x) =((2x^2 )/((1−x^2 )^2 )) +(1/2)ln∣((1+x)/(1−x))∣   with ∣x∣ <1

s(x)=n=0(2n)x2n+n=0(2n+1)1x2n+1=2n=0nx2n+n=0x2n+12n+1=h(x)+k(x)wehaven=0xn=11xn=1nxn1=1(1x)2n=1nxn=x(1x)2n=1nx2n=x2(1x2)2=h(x)k(x)=n=0x2n+12n+1k(x)=n=0x2n=11x2k(x)=0xdt1t2+k(k=0)=120x(11t+11+t)dt=12[ln1+t1t]0x=12ln1+x1xs(x)=2x2(1x2)2+12ln1+x1xwithx<1

Answered by maths mind last updated on 18/May/20

=Σ_(n≥1) 2nx^(2n) −Σ_(n≥0) (2n+1)x^(2n+1)   s=Σ_(n≥1) 2nx^(2n) −xΣ_(n≥0) 2nx^(2n) −xΣ_(n≥0) x^(2n)   Σ_(n≥1) nx^(n−1) =(1/((1−x)^2 ))  ⇒Σ2nx^(2n) =((2x^2 )/((1−x^2 )^2 ))  ⇒s=((2x^2 )/((1−x^2 )^2 ))−((2x^3 )/((1−x^2 )^2 ))−(x/(1−x^2 ))  s=((−x^3 +2x^2 −x)/((1−x^2 )^2 ))

=n12nx2nn0(2n+1)x2n+1s=n12nx2nxn02nx2nxn0x2nn1nxn1=1(1x)2Σ2nx2n=2x2(1x2)2s=2x2(1x2)22x3(1x2)2x1x2s=x3+2x2x(1x2)2

Commented by mathmax by abdo last updated on 19/May/20

thanks sir.

thankssir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com