Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 94336 by mathmax by abdo last updated on 19/May/20

let f(x) =arctan(2x) e^(−3x)   1) determine f^((n)) (x) and f^((n)) (0)  2)developp f at integr serie

letf(x)=arctan(2x)e3x1)determinef(n)(x)andf(n)(0)2)developpfatintegrserie

Answered by prakash jain last updated on 18/May/20

e^x =Σ_(k=0) ^∞ (x^k /(k!))  We need (x^(4n) /((4n)!)) which is every 4^(th)   power.   Noting that i^4 =1 we start with   e^(ix) =1+ix−(x^2 /(2!))−i(x^3 /(3!))+(x^4 /4)+i(x^5 /(5!))+..  add e^(−ix)  to remove all odd power  e^(ix) +e^(−ix) =2(1−(x^2 /(2!))+(x^4 /(4!))−(x^6 /(6!))+(x^8 /(8!))..)  To get required terms we need to  add all even power of x  e^x +e^(−x) =2(1+(x^2 /(2!))+(x^4 /(4!))+−...)  sum  e^(ix) +e^(−ix) +e^x +e^(−x) =4(1+(x^4 /(4!))+(x^8 /(8!))...)  Σ_(k=0) ^∞ (x^(4n) /((4n)!))=(1/2)(cosx+cosh x)

ex=k=0xkk!Weneedx4n(4n)!whichisevery4thpower.Notingthati4=1westartwitheix=1+ixx22!ix33!+x44+ix55!+..addeixtoremovealloddpowereix+eix=2(1x22!+x44!x66!+x88!..)Togetrequiredtermsweneedtoaddallevenpowerofxex+ex=2(1+x22!+x44!+...)sumeix+eix+ex+ex=4(1+x44!+x88!...)k=0x4n(4n)!=12(cosx+coshx)

Commented by abdomathmax last updated on 18/May/20

thank you sir prakach

thankyousirprakach

Commented by mathmax by abdo last updated on 20/May/20

the question here is calculate Σ_(n=0) ^∞  (x^(4n) /((4n)!))

thequestionhereiscalculaten=0x4n(4n)!

Commented by prakash jain last updated on 20/May/20

May be I answered agaimst a wrong  question.I was answering  Σ_(n=0) ^∞ (x^(4n) /((4m)!))

MaybeIansweredagaimstawrongquestion.Iwasansweringn=0x4n(4m)!

Answered by mathmax by abdo last updated on 20/May/20

1) we have f(x) =e^(−3x)  arctan(2x) ⇒  f^((n)) (x) =Σ_(k=0) ^n  C_n ^k  (arctan(2x))^((k))  (e^(−3x) )^((n−k))   =(−3)^n  e^(−3x)  arctan(2x) +Σ_(k=1) ^n  C_n ^k  (arctan(2x))^((k))  (−3)^(n−k)  e^(−3x)   we have (arctan(2x))^((1))  =(2/(1+4x^2 )) =(2/(4((1/4)+x^2 ))) =(1/(2(x−(i/2))(x+(i/2))))  =(1/(2i))((1/(x−(i/2)))−(1/(x+(i/2)))) ⇒(arctan(2x))^((k)) =(1/(2i)){((1/(x−(i/2))))^((k−1)) −((1/(x+(i/2))))^((k−1)) }  =(1/(2i)){ (((−1)^(k−1) (k−1)!)/((x−(i/2))^k ))−(((−1)^(k−1) (k−1)!)/((x+(i/2))^k ))}  =(((−1)^(k−1) (k−1)!)/(2i))( (((x+(i/2))^k −(x−(i/2))^k )/((x^2  +(1/4))^k )))  =(−1)^(k−1) (k−1)!×((Im(  (x+(i/2))^k ))/((x^2  +(1/4))^k )) ⇒  f^((n)) (x) =(−3)^n  e^(−3x)  arctan(2x)  +Σ_(k=1) ^n  C_n ^k    (((−1)^(k−1) (k−1)! .Im((x+(i/2))^k ))/((x^2  +(1/4))^k ))×(−3)^(n−k)  e^(−3x)   ⇒ f^((n)) (0) =Σ_(k=1) ^n  C_n ^k  4^k (−1)^(k−1) (k−1)! ×(1/2^k )sin(((kπ)/2)) (−3)^(n−k)   ⇒f^((n)) (0) =Σ_(k=1) ^n  2^k  (−1)^(k−1) (k−1)! ((n!)/(k!(n−k)!)) sin(((kπ)/2))(−3)^(n−k)   =Σ_(k=1) ^n  (−1)^(k−1) 2^k  ((n!)/(k(n−k)!))(−3)^(n−k)   2) f(x) =Σ_(n=0) ^∞  ((f^((n)) (0))/(n!))x^n   ⇒  f(x) =Σ_(n=1) ^∞ (Σ_(k=1) ^n  (−1)^(k−1)  2^k  ×(1/(k(n−k)!))(−3)^(n−k) )x^n   =Σ_(n=1) ^∞  ( Σ_(k=1) ^n  (((−1)^(k−1)  2^k (−3)^(n−k) )/(k .(n−k)!))) x^n

1)wehavef(x)=e3xarctan(2x)f(n)(x)=k=0nCnk(arctan(2x))(k)(e3x)(nk)=(3)ne3xarctan(2x)+k=1nCnk(arctan(2x))(k)(3)nke3xwehave(arctan(2x))(1)=21+4x2=24(14+x2)=12(xi2)(x+i2)=12i(1xi21x+i2)(arctan(2x))(k)=12i{(1xi2)(k1)(1x+i2)(k1)}=12i{(1)k1(k1)!(xi2)k(1)k1(k1)!(x+i2)k}=(1)k1(k1)!2i((x+i2)k(xi2)k(x2+14)k)=(1)k1(k1)!×Im((x+i2)k)(x2+14)kf(n)(x)=(3)ne3xarctan(2x)+k=1nCnk(1)k1(k1)!.Im((x+i2)k)(x2+14)k×(3)nke3xf(n)(0)=k=1nCnk4k(1)k1(k1)!×12ksin(kπ2)(3)nkf(n)(0)=k=1n2k(1)k1(k1)!n!k!(nk)!sin(kπ2)(3)nk=k=1n(1)k12kn!k(nk)!(3)nk2)f(x)=n=0f(n)(0)n!xnf(x)=n=1(k=1n(1)k12k×1k(nk)!(3)nk)xn=n=1(k=1n(1)k12k(3)nkk.(nk)!)xn

Terms of Service

Privacy Policy

Contact: info@tinkutara.com