Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 94337 by mathmax by abdo last updated on 18/May/20

developp at integr serie f(x) =(1/((x−1)(x−2)))

$${developp}\:{at}\:{integr}\:{serie}\:{f}\left({x}\right)\:=\frac{\mathrm{1}}{\left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)} \\ $$

Answered by Rio Michael last updated on 18/May/20

if you mean develope a series then:  f(x) = (1/((x−1)(x−2))) ≡ (1/(x−2)) −(1/(x−1))  ⇒f(x) = (x−2)^(−1) −(x−1)^(−1)                 = x^(−1) (1−(2/x))^(−1) −x^(−1) (1−(1/x))^(−1)                 = x^(−1) [1 + (2/x) + (4/x^2 )+...]−x^(−1) [1 + (1/x) + (1/x^2 ) + ...]               = (1/x) + (2/x^2 ) + ... −(1/x)−(1/x^2 ) −... = (1/x^2 ) +... ∣(2/x)∣ < 1

$$\mathrm{if}\:\mathrm{you}\:\mathrm{mean}\:\mathrm{develope}\:\mathrm{a}\:\mathrm{series}\:\mathrm{then}: \\ $$$${f}\left({x}\right)\:=\:\frac{\mathrm{1}}{\left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)}\:\equiv\:\frac{\mathrm{1}}{{x}−\mathrm{2}}\:−\frac{\mathrm{1}}{{x}−\mathrm{1}} \\ $$$$\Rightarrow{f}\left({x}\right)\:=\:\left({x}−\mathrm{2}\right)^{−\mathrm{1}} −\left({x}−\mathrm{1}\right)^{−\mathrm{1}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:{x}^{−\mathrm{1}} \left(\mathrm{1}−\frac{\mathrm{2}}{{x}}\right)^{−\mathrm{1}} −{x}^{−\mathrm{1}} \left(\mathrm{1}−\frac{\mathrm{1}}{{x}}\right)^{−\mathrm{1}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:{x}^{−\mathrm{1}} \left[\mathrm{1}\:+\:\frac{\mathrm{2}}{{x}}\:+\:\frac{\mathrm{4}}{{x}^{\mathrm{2}} }+...\right]−{x}^{−\mathrm{1}} \left[\mathrm{1}\:+\:\frac{\mathrm{1}}{{x}}\:+\:\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:+\:...\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\frac{\mathrm{1}}{{x}}\:+\:\frac{\mathrm{2}}{{x}^{\mathrm{2}} }\:+\:...\:−\frac{\mathrm{1}}{{x}}−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:−...\:=\:\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:+...\:\mid\frac{\mathrm{2}}{{x}}\mid\:<\:\mathrm{1} \\ $$$$ \\ $$

Commented by mathmax by abdo last updated on 18/May/20

sir rio this is not developpement at integr serie ...

$$\mathrm{sir}\:\mathrm{rio}\:\mathrm{this}\:\mathrm{is}\:\mathrm{not}\:\mathrm{developpement}\:\mathrm{at}\:\mathrm{integr}\:\mathrm{serie}\:... \\ $$

Answered by mathmax by abdo last updated on 18/May/20

we have  f(x) =Σ_(n=0) ^∞  ((f^n (0))/(n!)) x^n   let determine f^n (0)  we have f(x) =(1/(x−2))−(1/(x−1)) ⇒f^((n)) (x) =(((−1)^n n!)/((x−2)^(n+1) ))−(((−1)^n n!)/((x−1)^(n+1) ))  ⇒f^((n)) (0) =(−1)^n n!{(1/((−2)^(n+1) ))−(1/((−1)^(n+1) ))}  =(((−1)^n n!)/((−1)^(n+1) )){ (1/2^(n+1) )−1} =−n!{(1/2^(n+1) )−1}⇒  f(x) =−Σ_(n=0) ^∞  {(1/2^(n+1) )−1} x^n  =−Σ_(n=0) ^∞ (x^n /2^(n+1) ) +Σ_(n=0) ^∞  x^n    with  ∣x∣<1  .

$$\mathrm{we}\:\mathrm{have}\:\:\mathrm{f}\left(\mathrm{x}\right)\:=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{f}^{\mathrm{n}} \left(\mathrm{0}\right)}{\mathrm{n}!}\:\mathrm{x}^{\mathrm{n}} \:\:\mathrm{let}\:\mathrm{determine}\:\mathrm{f}^{\mathrm{n}} \left(\mathrm{0}\right) \\ $$$$\mathrm{we}\:\mathrm{have}\:\mathrm{f}\left(\mathrm{x}\right)\:=\frac{\mathrm{1}}{\mathrm{x}−\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{x}−\mathrm{1}}\:\Rightarrow\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{x}\right)\:=\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} \mathrm{n}!}{\left(\mathrm{x}−\mathrm{2}\right)^{\mathrm{n}+\mathrm{1}} }−\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} \mathrm{n}!}{\left(\mathrm{x}−\mathrm{1}\right)^{\mathrm{n}+\mathrm{1}} } \\ $$$$\Rightarrow\mathrm{f}^{\left(\mathrm{n}\right)} \left(\mathrm{0}\right)\:=\left(−\mathrm{1}\right)^{\mathrm{n}} \mathrm{n}!\left\{\frac{\mathrm{1}}{\left(−\mathrm{2}\right)^{\mathrm{n}+\mathrm{1}} }−\frac{\mathrm{1}}{\left(−\mathrm{1}\right)^{\mathrm{n}+\mathrm{1}} }\right\} \\ $$$$=\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} \mathrm{n}!}{\left(−\mathrm{1}\right)^{\mathrm{n}+\mathrm{1}} }\left\{\:\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{n}+\mathrm{1}} }−\mathrm{1}\right\}\:=−\mathrm{n}!\left\{\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{n}+\mathrm{1}} }−\mathrm{1}\right\}\Rightarrow \\ $$$$\mathrm{f}\left(\mathrm{x}\right)\:=−\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\left\{\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{n}+\mathrm{1}} }−\mathrm{1}\right\}\:\mathrm{x}^{\mathrm{n}} \:=−\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \frac{\mathrm{x}^{\mathrm{n}} }{\mathrm{2}^{\mathrm{n}+\mathrm{1}} }\:+\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\mathrm{x}^{\mathrm{n}} \:\:\:\mathrm{with} \\ $$$$\mid\mathrm{x}\mid<\mathrm{1}\:\:. \\ $$$$ \\ $$

Answered by mathmax by abdo last updated on 18/May/20

another way  we have f(x)=(1/(x−2))−(1/(x−1))  =(1/(1−x))−(1/(2−x)) =(1/(1−x))−(1/(2(1−(x/2))))  so for ∣x∣<1 we get  f(x) =Σ_(n=0) ^∞  x^n −(1/2)Σ_(n=0) ^∞  ((x/2))^n  =Σ_(n=0) ^∞ x^n −Σ_(n=0) ^∞  (x^n /2^(n+1) )  =Σ_(n=0) ^∞ (1−(1/2^(n+1) ))x^n

$$\mathrm{another}\:\mathrm{way}\:\:\mathrm{we}\:\mathrm{have}\:\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{1}}{\mathrm{x}−\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{x}−\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{1}−\mathrm{x}}−\frac{\mathrm{1}}{\mathrm{2}−\mathrm{x}}\:=\frac{\mathrm{1}}{\mathrm{1}−\mathrm{x}}−\frac{\mathrm{1}}{\mathrm{2}\left(\mathrm{1}−\frac{\mathrm{x}}{\mathrm{2}}\right)}\:\:\mathrm{so}\:\mathrm{for}\:\mid\mathrm{x}\mid<\mathrm{1}\:\mathrm{we}\:\mathrm{get} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)\:=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\mathrm{x}^{\mathrm{n}} −\frac{\mathrm{1}}{\mathrm{2}}\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\left(\frac{\mathrm{x}}{\mathrm{2}}\right)^{\mathrm{n}} \:=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \mathrm{x}^{\mathrm{n}} −\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{x}^{\mathrm{n}} }{\mathrm{2}^{\mathrm{n}+\mathrm{1}} } \\ $$$$=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{n}+\mathrm{1}} }\right)\mathrm{x}^{\mathrm{n}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com