Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 94338 by mathmax by abdo last updated on 18/May/20

developp at intergr serie f(x) =(1/((x+3)(x^2  +4)))

developpatintergrserief(x)=1(x+3)(x2+4)

Answered by mathmax by abdo last updated on 18/May/20

fist let find f^((n)) (0),  f(x)=(1/((x+3)(x−2i)(x+2i))) =(a/(x+3)) +(b/(x−2i)) +(c/(x+2i))  a =(1/(13))        b =(1/((2i+3)4i))  and c =(1/(−4i(−2i+3))) ⇒  f(x) =(1/(13(x+3))) +(1/(i(8i+12)(x−2i))) +(1/(4i(2i−3)(x+2i))) ⇒  f^((n)) (x) =(1/(13))×(((−1)^n n!)/((x+3)^(n+1) )) −(i/(8i+12))×(((−1)^n n!)/((x−2i)^(n+1) )) −((i(−1)^n n!)/((8i−12)(x+2i)^(n+1) ))  ⇒f^((n)) (0) =(1/(13))×(((−1)^n n!)/3^(n+1) )−(i/(8i+12))  (((−1)^n n!)/((−2i)^(n+1) ))−((i(−1)^n n!)/((8i−12)(2i)^(n+1) ))  f(x) =Σ_(n=0) ^∞  ((f^((n)) (0))/(n!)) x^n  ⇒f(x) =(1/(13))Σ_(n=0) ^∞  (((−1)^n )/3^(n+1) )x^n   −(i/(8i+12)) Σ (((−1)^n )/((−2i)^(n+1) ))x^n  −(i/(8i−12)) Σ_(n=0) ^∞  (((−1)^n )/((2i)^(n+1) )) x^n

fistletfindf(n)(0),f(x)=1(x+3)(x2i)(x+2i)=ax+3+bx2i+cx+2ia=113b=1(2i+3)4iandc=14i(2i+3)f(x)=113(x+3)+1i(8i+12)(x2i)+14i(2i3)(x+2i)f(n)(x)=113×(1)nn!(x+3)n+1i8i+12×(1)nn!(x2i)n+1i(1)nn!(8i12)(x+2i)n+1f(n)(0)=113×(1)nn!3n+1i8i+12(1)nn!(2i)n+1i(1)nn!(8i12)(2i)n+1f(x)=n=0f(n)(0)n!xnf(x)=113n=0(1)n3n+1xni8i+12Σ(1)n(2i)n+1xni8i12n=0(1)n(2i)n+1xn

Terms of Service

Privacy Policy

Contact: info@tinkutara.com