Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 85813 by jagoll last updated on 25/Mar/20

∫ x^2  (√(1+x^2 )) dx ?

$$\int\:\mathrm{x}^{\mathrm{2}} \:\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:\mathrm{dx}\:? \\ $$

Commented by jagoll last updated on 25/Mar/20

∫ (1/2)x (2x(√(1+x^2 )) ) dx =   ∫ (1/2)x (√(1+x^2 )) d(1+x^2 )  = (1/3)x (1+x^2 )^(3/2) −(1/3)∫ (1+x^2 )^(3/2)  dx  let J = ∫ (1+x^2 )^(3/2)  dx  [ x = tan t ]   J = ∫ sec^5  t dt   = sec^3 t tan t − ∫ 3 sec^5 t dt + ∫ 3sec^3  t dt  4J = sec^3  t tan t + 3 ( (1/2)sec t tan t −(1/2)ln∣sec t+tan t ∣)   J = (1/4) sec^3  t tan t + (3/8) sec t tan t −   (3/8) ln ∣ sec t + tan  t∣

$$\int\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{x}\:\left(\mathrm{2x}\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:\right)\:\mathrm{dx}\:=\: \\ $$$$\int\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{x}\:\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:\mathrm{d}\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right) \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{3}}\mathrm{x}\:\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{3}/\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{3}}\int\:\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{3}/\mathrm{2}} \:\mathrm{dx} \\ $$$$\mathrm{let}\:\mathrm{J}\:=\:\int\:\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{3}/\mathrm{2}} \:\mathrm{dx} \\ $$$$\left[\:\mathrm{x}\:=\:\mathrm{tan}\:\mathrm{t}\:\right]\: \\ $$$$\mathrm{J}\:=\:\int\:\mathrm{sec}\:^{\mathrm{5}} \:\mathrm{t}\:\mathrm{dt}\: \\ $$$$=\:\mathrm{sec}\:^{\mathrm{3}} \mathrm{t}\:\mathrm{tan}\:\mathrm{t}\:−\:\int\:\mathrm{3}\:\mathrm{sec}\:^{\mathrm{5}} \mathrm{t}\:\mathrm{dt}\:+\:\int\:\mathrm{3sec}\:^{\mathrm{3}} \:\mathrm{t}\:\mathrm{dt} \\ $$$$\mathrm{4J}\:=\:\mathrm{sec}\:^{\mathrm{3}} \:\mathrm{t}\:\mathrm{tan}\:\mathrm{t}\:+\:\mathrm{3}\:\left(\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sec}\:\mathrm{t}\:\mathrm{tan}\:\mathrm{t}\:−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\mid\mathrm{sec}\:\mathrm{t}+\mathrm{tan}\:\mathrm{t}\:\mid\right)\: \\ $$$$\mathrm{J}\:=\:\frac{\mathrm{1}}{\mathrm{4}}\:\mathrm{sec}\:^{\mathrm{3}} \:\mathrm{t}\:\mathrm{tan}\:\mathrm{t}\:+\:\frac{\mathrm{3}}{\mathrm{8}}\:\mathrm{sec}\:\mathrm{t}\:\mathrm{tan}\:\mathrm{t}\:−\: \\ $$$$\frac{\mathrm{3}}{\mathrm{8}}\:\mathrm{ln}\:\mid\:\mathrm{sec}\:\mathrm{t}\:+\:\mathrm{tan}\:\:\mathrm{t}\mid\: \\ $$

Answered by john santu last updated on 25/Mar/20

let x = sinh t ⇒dx = cosh t dt  I = ∫ sinh^2 t cosh t (cosh t dt)  = ∫ sinh^2 t cosh^2 t dt   = (1/4)∫ sinh^2  2t dt   = (1/8) ∫ (cosh 4t−1) dt  = (1/8) (((sinh 4t)/4) − t ) + c  = (1/8) [( sinh t cosh t)(1+2sinh^2 t)−t ] +c  = (1/8) [ (x(√(1+x^2 )) )(1+2x^2 )−sinh^(−1)  x] + c

$${let}\:{x}\:=\:\mathrm{sinh}\:{t}\:\Rightarrow{dx}\:=\:\mathrm{cosh}\:{t}\:{dt} \\ $$$${I}\:=\:\int\:\mathrm{sinh}\:^{\mathrm{2}} {t}\:\mathrm{cosh}\:{t}\:\left(\mathrm{cosh}\:{t}\:{dt}\right) \\ $$$$=\:\int\:\mathrm{sinh}\:^{\mathrm{2}} {t}\:\mathrm{cosh}\:^{\mathrm{2}} {t}\:{dt}\: \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{4}}\int\:\mathrm{sinh}\:^{\mathrm{2}} \:\mathrm{2}{t}\:{dt}\: \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{8}}\:\int\:\left(\mathrm{cosh}\:\mathrm{4}{t}−\mathrm{1}\right)\:{dt} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{8}}\:\left(\frac{\mathrm{sinh}\:\mathrm{4}{t}}{\mathrm{4}}\:−\:{t}\:\right)\:+\:{c} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{8}}\:\left[\left(\:\mathrm{sinh}\:{t}\:\mathrm{cosh}\:{t}\right)\left(\mathrm{1}+\mathrm{2sinh}\:^{\mathrm{2}} {t}\right)−{t}\:\right]\:+{c} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{8}}\:\left[\:\left({x}\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:\right)\left(\mathrm{1}+\mathrm{2}{x}^{\mathrm{2}} \right)−\mathrm{sinh}\:^{−\mathrm{1}} \:{x}\right]\:+\:{c} \\ $$

Commented by jagoll last updated on 25/Mar/20

waw thank you sir. i try via integration  by parts

$$\mathrm{waw}\:\mathrm{thank}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{i}\:\mathrm{try}\:\mathrm{via}\:\mathrm{integration} \\ $$$$\mathrm{by}\:\mathrm{parts} \\ $$

Answered by MJS last updated on 25/Mar/20

∫x^2 (√(1+x^2 ))dx=       [x=sinh ln t =((t^2 −1)/(2t)) ⇔ t=x+(√(x^2 +1)) → dx=((t^2 +1)/(2t^2 ))]  =(1/(16))∫t^3 dt−(1/8)∫(dt/t)+(1/(16))∫(dt/t^5 )=  =(1/(64))t^4 −(1/8)ln t −(1/(64t^4 ))=((t^8 −1)/(64t^4 ))−(1/8)ln t =  =(1/8)(x(2x^2 +1)(√(x^2 +1))−ln (x+(√(x^2 +1)))) +C

$$\int{x}^{\mathrm{2}} \sqrt{\mathrm{1}+{x}^{\mathrm{2}} }{dx}= \\ $$$$\:\:\:\:\:\left[{x}=\mathrm{sinh}\:\mathrm{ln}\:{t}\:=\frac{{t}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}{t}}\:\Leftrightarrow\:{t}={x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}\:\rightarrow\:{dx}=\frac{{t}^{\mathrm{2}} +\mathrm{1}}{\mathrm{2}{t}^{\mathrm{2}} }\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{16}}\int{t}^{\mathrm{3}} {dt}−\frac{\mathrm{1}}{\mathrm{8}}\int\frac{{dt}}{{t}}+\frac{\mathrm{1}}{\mathrm{16}}\int\frac{{dt}}{{t}^{\mathrm{5}} }= \\ $$$$=\frac{\mathrm{1}}{\mathrm{64}}{t}^{\mathrm{4}} −\frac{\mathrm{1}}{\mathrm{8}}\mathrm{ln}\:{t}\:−\frac{\mathrm{1}}{\mathrm{64}{t}^{\mathrm{4}} }=\frac{{t}^{\mathrm{8}} −\mathrm{1}}{\mathrm{64}{t}^{\mathrm{4}} }−\frac{\mathrm{1}}{\mathrm{8}}\mathrm{ln}\:{t}\:= \\ $$$$=\frac{\mathrm{1}}{\mathrm{8}}\left({x}\left(\mathrm{2}{x}^{\mathrm{2}} +\mathrm{1}\right)\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}−\mathrm{ln}\:\left({x}+\sqrt{{x}^{\mathrm{2}} +\mathrm{1}}\right)\right)\:+{C} \\ $$

Commented by jagoll last updated on 25/Mar/20

what formula sinh (ln x) sir?

$$\mathrm{what}\:\mathrm{formula}\:\mathrm{sinh}\:\left(\mathrm{ln}\:\mathrm{x}\right)\:\mathrm{sir}? \\ $$

Commented by MJS last updated on 25/Mar/20

it′s just as it is  I had the idea to use this when I had to  solve integrals in 2 steps, 1^(st)  a hyperbolic  substitution, 2^(nd)  get rid of e^t . you can do  it in one step

$$\mathrm{it}'\mathrm{s}\:\mathrm{just}\:\mathrm{as}\:\mathrm{it}\:\mathrm{is} \\ $$$$\mathrm{I}\:\mathrm{had}\:\mathrm{the}\:\mathrm{idea}\:\mathrm{to}\:\mathrm{use}\:\mathrm{this}\:\mathrm{when}\:\mathrm{I}\:\mathrm{had}\:\mathrm{to} \\ $$$$\mathrm{solve}\:\mathrm{integrals}\:\mathrm{in}\:\mathrm{2}\:\mathrm{steps},\:\mathrm{1}^{\mathrm{st}} \:\mathrm{a}\:\mathrm{hyperbolic} \\ $$$$\mathrm{substitution},\:\mathrm{2}^{\mathrm{nd}} \:\mathrm{get}\:\mathrm{rid}\:\mathrm{of}\:\mathrm{e}^{{t}} .\:\mathrm{you}\:\mathrm{can}\:\mathrm{do} \\ $$$$\mathrm{it}\:\mathrm{in}\:\mathrm{one}\:\mathrm{step} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com