Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 9470 by tawakalitu last updated on 09/Dec/16

prove by mathematical induction.  (1/(1.3)) + (1/(2.5)) + (1/(3.7)) + ... + (1/((2n − 1)(2n + 1))) = (n/(2n + 1))

$$\mathrm{prove}\:\mathrm{by}\:\mathrm{mathematical}\:\mathrm{induction}. \\ $$$$\frac{\mathrm{1}}{\mathrm{1}.\mathrm{3}}\:+\:\frac{\mathrm{1}}{\mathrm{2}.\mathrm{5}}\:+\:\frac{\mathrm{1}}{\mathrm{3}.\mathrm{7}}\:+\:...\:+\:\frac{\mathrm{1}}{\left(\mathrm{2n}\:−\:\mathrm{1}\right)\left(\mathrm{2n}\:+\:\mathrm{1}\right)}\:=\:\frac{\mathrm{n}}{\mathrm{2n}\:+\:\mathrm{1}} \\ $$

Commented by mrW last updated on 10/Dec/16

please check the question!  should it be following?  (1/(1∙3))+(1/(3∙5))+(1/(5∙7)) + ... + (1/((2n − 1)(2n + 1))) = (n/(2n + 1))

$$\mathrm{please}\:\mathrm{check}\:\mathrm{the}\:\mathrm{question}! \\ $$$$\mathrm{should}\:\mathrm{it}\:\mathrm{be}\:\mathrm{following}? \\ $$$$\frac{\mathrm{1}}{\mathrm{1}\centerdot\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{3}\centerdot\mathrm{5}}+\frac{\mathrm{1}}{\mathrm{5}\centerdot\mathrm{7}}\:+\:...\:+\:\frac{\mathrm{1}}{\left(\mathrm{2n}\:−\:\mathrm{1}\right)\left(\mathrm{2n}\:+\:\mathrm{1}\right)}\:=\:\frac{\mathrm{n}}{\mathrm{2n}\:+\:\mathrm{1}} \\ $$

Commented by tawakalitu last updated on 10/Dec/16

 it should be like this

$$\:\mathrm{it}\:\mathrm{should}\:\mathrm{be}\:\mathrm{like}\:\mathrm{this} \\ $$

Answered by mrW last updated on 10/Dec/16

it is to prove  S(n)=Σ_(k=1) ^n  (1/((2k−1)(2k+1)))=(n/(2n+1))    for n=1:  S(1)=(1/(1×3))=(1/3)=^! (1/(2×1+1))=(1/3)  ⇒it′s true    suppose it′s true for n, we have for n+1  S(n+1)=S(n)+(1/([2(n+1)−1][2(n+1)+1]))  =S(n)+(1/((2n+1)[2(n+1)+1]))  =(n/(2n+1))+(1/((2n+1)[2(n+1)+1]))  =((n[2(n+1)+1]+1)/((2n+1)[2(n+1)+1]))  =((2n^2 +3n+1)/((2n+1)[2(n+1)+1]))  =(((2n+1)(n+1))/((2n+1)[2(n+1)+1]))  =(((n+1))/(2(n+1)+1))  that means it′s also true for n+1.  ⇒it′s true for all n≥1.

$$\mathrm{it}\:\mathrm{is}\:\mathrm{to}\:\mathrm{prove} \\ $$$$\mathrm{S}\left(\mathrm{n}\right)=\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\:\frac{\mathrm{1}}{\left(\mathrm{2k}−\mathrm{1}\right)\left(\mathrm{2k}+\mathrm{1}\right)}=\frac{\mathrm{n}}{\mathrm{2n}+\mathrm{1}} \\ $$$$ \\ $$$$\mathrm{for}\:\mathrm{n}=\mathrm{1}: \\ $$$$\mathrm{S}\left(\mathrm{1}\right)=\frac{\mathrm{1}}{\mathrm{1}×\mathrm{3}}=\frac{\mathrm{1}}{\mathrm{3}}\overset{!} {=}\frac{\mathrm{1}}{\mathrm{2}×\mathrm{1}+\mathrm{1}}=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\Rightarrow\mathrm{it}'\mathrm{s}\:\mathrm{true} \\ $$$$ \\ $$$$\mathrm{suppose}\:\mathrm{it}'\mathrm{s}\:\mathrm{true}\:\mathrm{for}\:\mathrm{n},\:\mathrm{we}\:\mathrm{have}\:\mathrm{for}\:\mathrm{n}+\mathrm{1} \\ $$$$\mathrm{S}\left(\mathrm{n}+\mathrm{1}\right)=\mathrm{S}\left(\mathrm{n}\right)+\frac{\mathrm{1}}{\left[\mathrm{2}\left(\mathrm{n}+\mathrm{1}\right)−\mathrm{1}\right]\left[\mathrm{2}\left(\mathrm{n}+\mathrm{1}\right)+\mathrm{1}\right]} \\ $$$$=\mathrm{S}\left(\mathrm{n}\right)+\frac{\mathrm{1}}{\left(\mathrm{2n}+\mathrm{1}\right)\left[\mathrm{2}\left(\mathrm{n}+\mathrm{1}\right)+\mathrm{1}\right]} \\ $$$$=\frac{\mathrm{n}}{\mathrm{2n}+\mathrm{1}}+\frac{\mathrm{1}}{\left(\mathrm{2n}+\mathrm{1}\right)\left[\mathrm{2}\left(\mathrm{n}+\mathrm{1}\right)+\mathrm{1}\right]} \\ $$$$=\frac{\mathrm{n}\left[\mathrm{2}\left(\mathrm{n}+\mathrm{1}\right)+\mathrm{1}\right]+\mathrm{1}}{\left(\mathrm{2n}+\mathrm{1}\right)\left[\mathrm{2}\left(\mathrm{n}+\mathrm{1}\right)+\mathrm{1}\right]} \\ $$$$=\frac{\mathrm{2n}^{\mathrm{2}} +\mathrm{3n}+\mathrm{1}}{\left(\mathrm{2n}+\mathrm{1}\right)\left[\mathrm{2}\left(\mathrm{n}+\mathrm{1}\right)+\mathrm{1}\right]} \\ $$$$=\frac{\left(\mathrm{2n}+\mathrm{1}\right)\left(\mathrm{n}+\mathrm{1}\right)}{\left(\mathrm{2n}+\mathrm{1}\right)\left[\mathrm{2}\left(\mathrm{n}+\mathrm{1}\right)+\mathrm{1}\right]} \\ $$$$=\frac{\left(\mathrm{n}+\mathrm{1}\right)}{\mathrm{2}\left(\mathrm{n}+\mathrm{1}\right)+\mathrm{1}} \\ $$$$\mathrm{that}\:\mathrm{means}\:\mathrm{it}'\mathrm{s}\:\mathrm{also}\:\mathrm{true}\:\mathrm{for}\:\mathrm{n}+\mathrm{1}. \\ $$$$\Rightarrow\mathrm{it}'\mathrm{s}\:\mathrm{true}\:\mathrm{for}\:\mathrm{all}\:\mathrm{n}\geqslant\mathrm{1}. \\ $$

Commented by tawakalitu last updated on 10/Dec/16

God bless you sir. i really appreciate your   effort.

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{i}\:\mathrm{really}\:\mathrm{appreciate}\:\mathrm{your}\: \\ $$$$\mathrm{effort}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com