Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 94811 by Abdulrahman last updated on 21/May/20

∫(dx/(x+(√x)))   (2,3)=?

$$\int\frac{\mathrm{dx}}{\mathrm{x}+\sqrt{\mathrm{x}}}\:\:\:\left(\mathrm{2},\mathrm{3}\right)=? \\ $$

Answered by ElOuafi last updated on 21/May/20

∫(dx/(x+(√x)))=∫(dx/((√x)((√x)+1)))=∫((2/(2(√x)))/((√x)+1)) dx=2∫((d((√x)+1))/((√x)+1))  put u=(√x)+1⇒=2∫(du/u)                                   =2ln((√x)+1)+c  so ∫_2 ^3 (dx/(x+(√x)))=2ln((((√3)+1)/((√2)+1)))

$$\int\frac{{dx}}{{x}+\sqrt{{x}}}=\int\frac{{dx}}{\sqrt{{x}}\left(\sqrt{{x}}+\mathrm{1}\right)}=\int\frac{\frac{\mathrm{2}}{\mathrm{2}\sqrt{{x}}}}{\sqrt{{x}}+\mathrm{1}}\:{dx}=\mathrm{2}\int\frac{{d}\left(\sqrt{{x}}+\mathrm{1}\right)}{\sqrt{{x}}+\mathrm{1}} \\ $$$${put}\:{u}=\sqrt{{x}}+\mathrm{1}\Rightarrow=\mathrm{2}\int\frac{{du}}{{u}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{2}{ln}\left(\sqrt{{x}}+\mathrm{1}\right)+{c} \\ $$$${so}\:\int_{\mathrm{2}} ^{\mathrm{3}} \frac{{dx}}{{x}+\sqrt{{x}}}=\mathrm{2}{ln}\left(\frac{\sqrt{\mathrm{3}}+\mathrm{1}}{\sqrt{\mathrm{2}}+\mathrm{1}}\right) \\ $$

Commented by Abdulrahman last updated on 21/May/20

thanks alot

$$\mathrm{thanks}\:\mathrm{alot} \\ $$

Answered by i jagooll last updated on 21/May/20

let (√(x ))=t ⇒x=t^2  ; dx = 2t dt   ∫  ((2t dt)/(t^2 +t)) = ∫ ((2 dt)/(t+1)) = 2 ln ∣t+1∣  = 2[  ln ∣1+(√x) ∣ ]_2 ^3   = 2 {ln (1+(√3))−ln(1+(√2)) }   = 2 ln (((1+(√3))/(1+(√2))))

$$\mathrm{let}\:\sqrt{\mathrm{x}\:}=\mathrm{t}\:\Rightarrow\mathrm{x}=\mathrm{t}^{\mathrm{2}} \:;\:\mathrm{dx}\:=\:\mathrm{2t}\:\mathrm{dt}\: \\ $$$$\int\:\:\frac{\mathrm{2t}\:\mathrm{dt}}{\mathrm{t}^{\mathrm{2}} +\mathrm{t}}\:=\:\int\:\frac{\mathrm{2}\:\mathrm{dt}}{\mathrm{t}+\mathrm{1}}\:=\:\mathrm{2}\:\mathrm{ln}\:\mid\mathrm{t}+\mathrm{1}\mid \\ $$$$=\:\mathrm{2}\left[\:\:\mathrm{ln}\:\mid\mathrm{1}+\sqrt{\mathrm{x}}\:\mid\:\right]_{\mathrm{2}} ^{\mathrm{3}} \\ $$$$=\:\mathrm{2}\:\left\{\mathrm{ln}\:\left(\mathrm{1}+\sqrt{\mathrm{3}}\right)−\mathrm{ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)\:\right\}\: \\ $$$$=\:\mathrm{2}\:\mathrm{ln}\:\left(\frac{\mathrm{1}+\sqrt{\mathrm{3}}}{\mathrm{1}+\sqrt{\mathrm{2}}}\right)\: \\ $$

Commented by Abdulrahman last updated on 21/May/20

thanks alot

$$\mathrm{thanks}\:\mathrm{alot} \\ $$

Answered by mathmax by abdo last updated on 21/May/20

I =∫_2 ^3  (dx/(x+(√x)))  we do the changement (√x)=t ⇒  I =∫_(√2) ^(√3)   ((2tdt)/(t^2  +t)) =2 ∫_(√2) ^(√3)    (dt/(t+1)) =2[ln(t+1)]_(√2) ^(√3)  =2(ln(1+(√3))−ln(1+(√2)))

$$\mathrm{I}\:=\int_{\mathrm{2}} ^{\mathrm{3}} \:\frac{\mathrm{dx}}{\mathrm{x}+\sqrt{\mathrm{x}}}\:\:\mathrm{we}\:\mathrm{do}\:\mathrm{the}\:\mathrm{changement}\:\sqrt{\mathrm{x}}=\mathrm{t}\:\Rightarrow \\ $$$$\mathrm{I}\:=\int_{\sqrt{\mathrm{2}}} ^{\sqrt{\mathrm{3}}} \:\:\frac{\mathrm{2tdt}}{\mathrm{t}^{\mathrm{2}} \:+\mathrm{t}}\:=\mathrm{2}\:\int_{\sqrt{\mathrm{2}}} ^{\sqrt{\mathrm{3}}} \:\:\:\frac{\mathrm{dt}}{\mathrm{t}+\mathrm{1}}\:=\mathrm{2}\left[\mathrm{ln}\left(\mathrm{t}+\mathrm{1}\right)\right]_{\sqrt{\mathrm{2}}} ^{\sqrt{\mathrm{3}}} \:=\mathrm{2}\left(\mathrm{ln}\left(\mathrm{1}+\sqrt{\mathrm{3}}\right)−\mathrm{ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com