Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 94907 by mathmax by abdo last updated on 21/May/20

1)calculate ∫  (dx/((2+(√(x−1)))^2 ))  2) find the value of  ∫_2 ^(+∞)    (dx/((2+(√(x−1)))^2 ))

$$\left.\mathrm{1}\right)\mathrm{calculate}\:\int\:\:\frac{\mathrm{dx}}{\left(\mathrm{2}+\sqrt{\mathrm{x}−\mathrm{1}}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{2}\right)\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\:\int_{\mathrm{2}} ^{+\infty} \:\:\:\frac{\mathrm{dx}}{\left(\mathrm{2}+\sqrt{\mathrm{x}−\mathrm{1}}\right)^{\mathrm{2}} } \\ $$

Answered by MJS last updated on 22/May/20

∫(dx/((2+(√(x−1)))^2 ))=       [t=2+(√(x−1)) → dx=2(√(x−1))dt]  =2∫((t−2)/t^2 )dt=(4/t)+2ln t =  =(4/(2+(√(x−1))))+2ln (2+(√(x−1))) +C  ∫_2 ^∞ (dx/((2+(√(x−1)))^2 )) diverges

$$\int\frac{{dx}}{\left(\mathrm{2}+\sqrt{{x}−\mathrm{1}}\right)^{\mathrm{2}} }= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{2}+\sqrt{{x}−\mathrm{1}}\:\rightarrow\:{dx}=\mathrm{2}\sqrt{{x}−\mathrm{1}}{dt}\right] \\ $$$$=\mathrm{2}\int\frac{{t}−\mathrm{2}}{{t}^{\mathrm{2}} }{dt}=\frac{\mathrm{4}}{{t}}+\mathrm{2ln}\:{t}\:= \\ $$$$=\frac{\mathrm{4}}{\mathrm{2}+\sqrt{{x}−\mathrm{1}}}+\mathrm{2ln}\:\left(\mathrm{2}+\sqrt{{x}−\mathrm{1}}\right)\:+{C} \\ $$$$\underset{\mathrm{2}} {\overset{\infty} {\int}}\frac{{dx}}{\left(\mathrm{2}+\sqrt{{x}−\mathrm{1}}\right)^{\mathrm{2}} }\:\mathrm{diverges} \\ $$

Commented by mathmax by abdo last updated on 22/May/20

thank you sir mjs

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir}\:\mathrm{mjs} \\ $$

Answered by mathmax by abdo last updated on 22/May/20

1) I =∫  (dx/((2+(√(x−1)))^2 ))  changement (√(x−1))=t give x−1=t^2  ⇒  I =∫ ((2tdt)/((2+t)^2 )) = ∫  ((2tdt)/(t^2  +4t +4)) =∫  ((2t+4−4)/(t^2  +4t +4))dt=∫((2t+4)/(t^2  +4t+4))dt  −4∫ (dt/(t^2  +4t +4)) =ln(t^2  +4t+4)−4 ∫ (dt/((t+2)^2 ))  =2ln∣t+2∣+(4/(t+2)) +C  =2ln∣(√(x−1))+2∣+(4/((√(x−1))+2)) +C  2) ∫_2 ^(+∞)  (dx/((2+(√(x−1)))^2 )) =[2ln∣(√(x−1))+2∣ +(4/((√(x−1))+2))]_2 ^(+∞)  =+∞  so this integrale is divergente .!

$$\left.\mathrm{1}\right)\:\mathrm{I}\:=\int\:\:\frac{\mathrm{dx}}{\left(\mathrm{2}+\sqrt{\mathrm{x}−\mathrm{1}}\right)^{\mathrm{2}} }\:\:\mathrm{changement}\:\sqrt{\mathrm{x}−\mathrm{1}}=\mathrm{t}\:\mathrm{give}\:\mathrm{x}−\mathrm{1}=\mathrm{t}^{\mathrm{2}} \:\Rightarrow \\ $$$$\mathrm{I}\:=\int\:\frac{\mathrm{2tdt}}{\left(\mathrm{2}+\mathrm{t}\right)^{\mathrm{2}} }\:=\:\int\:\:\frac{\mathrm{2tdt}}{\mathrm{t}^{\mathrm{2}} \:+\mathrm{4t}\:+\mathrm{4}}\:=\int\:\:\frac{\mathrm{2t}+\mathrm{4}−\mathrm{4}}{\mathrm{t}^{\mathrm{2}} \:+\mathrm{4t}\:+\mathrm{4}}\mathrm{dt}=\int\frac{\mathrm{2t}+\mathrm{4}}{\mathrm{t}^{\mathrm{2}} \:+\mathrm{4t}+\mathrm{4}}\mathrm{dt} \\ $$$$−\mathrm{4}\int\:\frac{\mathrm{dt}}{\mathrm{t}^{\mathrm{2}} \:+\mathrm{4t}\:+\mathrm{4}}\:=\mathrm{ln}\left(\mathrm{t}^{\mathrm{2}} \:+\mathrm{4t}+\mathrm{4}\right)−\mathrm{4}\:\int\:\frac{\mathrm{dt}}{\left(\mathrm{t}+\mathrm{2}\right)^{\mathrm{2}} } \\ $$$$=\mathrm{2ln}\mid\mathrm{t}+\mathrm{2}\mid+\frac{\mathrm{4}}{\mathrm{t}+\mathrm{2}}\:+\mathrm{C}\:\:=\mathrm{2ln}\mid\sqrt{\mathrm{x}−\mathrm{1}}+\mathrm{2}\mid+\frac{\mathrm{4}}{\sqrt{\mathrm{x}−\mathrm{1}}+\mathrm{2}}\:+\mathrm{C} \\ $$$$\left.\mathrm{2}\right)\:\int_{\mathrm{2}} ^{+\infty} \:\frac{\mathrm{dx}}{\left(\mathrm{2}+\sqrt{\mathrm{x}−\mathrm{1}}\right)^{\mathrm{2}} }\:=\left[\mathrm{2ln}\mid\sqrt{\mathrm{x}−\mathrm{1}}+\mathrm{2}\mid\:+\frac{\mathrm{4}}{\sqrt{\mathrm{x}−\mathrm{1}}+\mathrm{2}}\right]_{\mathrm{2}} ^{+\infty} \:=+\infty \\ $$$$\mathrm{so}\:\mathrm{this}\:\mathrm{integrale}\:\mathrm{is}\:\mathrm{divergente}\:.! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com