Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 95001 by mathocean1 last updated on 22/May/20

Exercise  Given a, b ∈ R^∗  and t is a variable real.  1) Solve in R^2  for x,y this system:    { ((xsin t−ycos t=−a)),((xcos t+ysin t=b.)) :}    2)/Demonstrate that these solutions can  be written like this ( r and θ ∈ R).   { ((x=rcos(t+θ))),((y=rsin(t+θ))) :}    3) we suppose now that a=b=1 and θ=(π/(12))  solve this in [0;2π[   { ((rcos(t+θ)≥−1)),((rsin(t+θ)<−1)) :}

$$\mathrm{Exercise} \\ $$$$\mathrm{Given}\:\mathrm{a},\:\mathrm{b}\:\in\:\mathbb{R}^{\ast} \:\mathrm{and}\:{t}\:\mathrm{is}\:\mathrm{a}\:\mathrm{variable}\:\mathrm{real}. \\ $$$$\left.\mathrm{1}\right)\:\mathrm{Solve}\:\mathrm{in}\:\mathbb{R}^{\mathrm{2}} \:\mathrm{for}\:{x},{y}\:\mathrm{this}\:\mathrm{system}:\: \\ $$$$\begin{cases}{{x}\mathrm{sin}\:{t}−{y}\mathrm{cos}\:{t}=−\mathrm{a}}\\{{x}\mathrm{cos}\:{t}+{y}\mathrm{sin}\:{t}={b}.}\end{cases} \\ $$$$ \\ $$$$\left.\mathrm{2}\right)/\mathrm{Demonstrate}\:\mathrm{that}\:\mathrm{these}\:\mathrm{solutions}\:\mathrm{can} \\ $$$$\mathrm{be}\:\mathrm{written}\:\mathrm{like}\:\mathrm{this}\:\left(\:{r}\:\mathrm{and}\:\theta\:\in\:\mathbb{R}\right). \\ $$$$\begin{cases}{{x}={rcos}\left({t}+\theta\right)}\\{{y}={rsin}\left({t}+\theta\right)}\end{cases} \\ $$$$ \\ $$$$\left.\mathrm{3}\right)\:\mathrm{we}\:\mathrm{suppose}\:\mathrm{now}\:\mathrm{that}\:\mathrm{a}=\mathrm{b}=\mathrm{1}\:\mathrm{and}\:\theta=\frac{\pi}{\mathrm{12}} \\ $$$$\mathrm{solve}\:\mathrm{this}\:\mathrm{in}\:\left[\mathrm{0};\mathrm{2}\pi\left[\right.\right. \\ $$$$\begin{cases}{{rcos}\left({t}+\theta\right)\geqslant−\mathrm{1}}\\{{rsin}\left({t}+\theta\right)<−\mathrm{1}}\end{cases} \\ $$

Answered by bobhans last updated on 22/May/20

(1)⇒(i)x^2 sin^2 t−2xysin tcos t+y^2 cos^2 t = a^2   ⇒(ii)x^2 cos^2 t+2xycos tsin t+y^2 sin^2 t = b^2   (i)+(ii) ⇒ x^2 + y^2 −2xy(sin tcos t−cos tsin t) = a^2 +b^2   ⇒ x^2  + y^2  = a^2  + b^2

$$\left(\mathrm{1}\right)\Rightarrow\left(\mathrm{i}\right)\mathrm{x}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \mathrm{t}−\mathrm{2xysin}\:\mathrm{tcos}\:\mathrm{t}+\mathrm{y}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \mathrm{t}\:=\:\mathrm{a}^{\mathrm{2}} \\ $$$$\Rightarrow\left(\mathrm{ii}\right)\mathrm{x}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \mathrm{t}+\mathrm{2xycos}\:\mathrm{tsin}\:\mathrm{t}+\mathrm{y}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \mathrm{t}\:=\:\mathrm{b}^{\mathrm{2}} \\ $$$$\left(\mathrm{i}\right)+\left(\mathrm{ii}\right)\:\Rightarrow\:{x}^{\mathrm{2}} +\:{y}^{\mathrm{2}} −\mathrm{2}{xy}\left(\mathrm{sin}\:{t}\mathrm{cos}\:{t}−\mathrm{cos}\:{t}\mathrm{sin}\:{t}\right)\:=\:{a}^{\mathrm{2}} +{b}^{\mathrm{2}} \\ $$$$\Rightarrow\:{x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} \:=\:{a}^{\mathrm{2}} \:+\:{b}^{\mathrm{2}} \: \\ $$

Answered by mathmax by abdo last updated on 22/May/20

1)   { ((sint x−cost y =−a)),((cost x +sint y =b)) :}  Δ_s = determinant (((sint       −cost)),((cost         sint)))=sin^2 t +cos^2 t?=1 ≠0 ⇒  x =(Δ_x /Δ)  and y =((Δy)/Δ)  we have Δ_x = determinant (((−a       −cost)),((b                sint)))=−asint  +bcost  Δ_y = determinant (((sint       −a)),((cost           b)))=bsint +acost ⇒  x=bcost −asint  and y =acost +bsint  2) we have x =(√(a^2  +b^2 ))((b/(√(a^2  +b^2 ))) cost−(a/(√(a^2  +b^2 )))sint)  let cosθ =(b/(√(a^2  +b^2 )))  and sinθ =(a/(√(a^2  +b^2 ))) and r=(√(a^2  +b^2 ))  ⇒x =r(cost cosθ−sint sinθ) =r cos(t+θ)  y =(√(a^2  +b^2 ))((a/(√(a^2  +b^2 ))) cost +(b/(√(a^2  +b^2 )))sint) =r(sinθ cost +cosθ sint)  =r sin(t+θ)

$$\left.\mathrm{1}\right)\:\:\begin{cases}{\mathrm{sint}\:\mathrm{x}−\mathrm{cost}\:\mathrm{y}\:=−\mathrm{a}}\\{\mathrm{cost}\:\mathrm{x}\:+\mathrm{sint}\:\mathrm{y}\:=\mathrm{b}}\end{cases} \\ $$$$\Delta_{\mathrm{s}} =\begin{vmatrix}{\mathrm{sint}\:\:\:\:\:\:\:−\mathrm{cost}}\\{\mathrm{cost}\:\:\:\:\:\:\:\:\:\mathrm{sint}}\end{vmatrix}=\mathrm{sin}^{\mathrm{2}} \mathrm{t}\:+\mathrm{cos}^{\mathrm{2}} \mathrm{t}?=\mathrm{1}\:\neq\mathrm{0}\:\Rightarrow \\ $$$$\mathrm{x}\:=\frac{\Delta_{\mathrm{x}} }{\Delta}\:\:\mathrm{and}\:\mathrm{y}\:=\frac{\Delta\mathrm{y}}{\Delta}\:\:\mathrm{we}\:\mathrm{have}\:\Delta_{\mathrm{x}} =\begin{vmatrix}{−\mathrm{a}\:\:\:\:\:\:\:−\mathrm{cost}}\\{\mathrm{b}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{sint}}\end{vmatrix}=−\mathrm{asint}\:\:+\mathrm{bcost} \\ $$$$\Delta_{\mathrm{y}} =\begin{vmatrix}{\mathrm{sint}\:\:\:\:\:\:\:−\mathrm{a}}\\{\mathrm{cost}\:\:\:\:\:\:\:\:\:\:\:\mathrm{b}}\end{vmatrix}=\mathrm{bsint}\:+\mathrm{acost}\:\Rightarrow \\ $$$$\mathrm{x}=\mathrm{bcost}\:−\mathrm{asint}\:\:\mathrm{and}\:\mathrm{y}\:=\mathrm{acost}\:+\mathrm{bsint} \\ $$$$\left.\mathrm{2}\right)\:\mathrm{we}\:\mathrm{have}\:\mathrm{x}\:=\sqrt{\mathrm{a}^{\mathrm{2}} \:+\mathrm{b}^{\mathrm{2}} }\left(\frac{\mathrm{b}}{\sqrt{\mathrm{a}^{\mathrm{2}} \:+\mathrm{b}^{\mathrm{2}} }}\:\mathrm{cost}−\frac{\mathrm{a}}{\sqrt{\mathrm{a}^{\mathrm{2}} \:+\mathrm{b}^{\mathrm{2}} }}\mathrm{sint}\right) \\ $$$$\mathrm{let}\:\mathrm{cos}\theta\:=\frac{\mathrm{b}}{\sqrt{\mathrm{a}^{\mathrm{2}} \:+\mathrm{b}^{\mathrm{2}} }}\:\:\mathrm{and}\:\mathrm{sin}\theta\:=\frac{\mathrm{a}}{\sqrt{\mathrm{a}^{\mathrm{2}} \:+\mathrm{b}^{\mathrm{2}} }}\:\mathrm{and}\:\mathrm{r}=\sqrt{\mathrm{a}^{\mathrm{2}} \:+\mathrm{b}^{\mathrm{2}} } \\ $$$$\Rightarrow\mathrm{x}\:=\mathrm{r}\left(\mathrm{cost}\:\mathrm{cos}\theta−\mathrm{sint}\:\mathrm{sin}\theta\right)\:=\mathrm{r}\:\mathrm{cos}\left(\mathrm{t}+\theta\right) \\ $$$$\mathrm{y}\:=\sqrt{\mathrm{a}^{\mathrm{2}} \:+\mathrm{b}^{\mathrm{2}} }\left(\frac{\mathrm{a}}{\sqrt{\mathrm{a}^{\mathrm{2}} \:+\mathrm{b}^{\mathrm{2}} }}\:\mathrm{cost}\:+\frac{\mathrm{b}}{\sqrt{\mathrm{a}^{\mathrm{2}} \:+\mathrm{b}^{\mathrm{2}} }}\mathrm{sint}\right)\:=\mathrm{r}\left(\mathrm{sin}\theta\:\mathrm{cost}\:+\mathrm{cos}\theta\:\mathrm{sint}\right) \\ $$$$=\mathrm{r}\:\mathrm{sin}\left(\mathrm{t}+\theta\right) \\ $$$$ \\ $$

Commented by mathocean1 last updated on 08/Jun/20

thanks sir

$${thanks}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com