Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 95060 by EmericGent last updated on 22/May/20

Evaluate  ∫_0 ^∞ arcsin(e^(-x) ) dx  ∫_0 ^∞ arccos(1-2e^(-x) ) dx  and Step Up  Evaluate  ∫_0 ^∞ arccos(1-e^(-x) ) dx  ∫_(-t) ^t arctan(e^(-x) ) dx

Evaluate0arcsin(ex)dx0arccos(12ex)dxandStepUpEvaluate0arccos(1ex)dxttarctan(ex)dx

Answered by mathmax by abdo last updated on 23/May/20

let take a try  I = ∫_0 ^∞  arcsin(e^(−x) )dx  changement e^(−x)  =t give x =−lnt ⇒  I =∫_0 ^1  arcsin(t)(dt/t) =∫_0 ^1   ((arcsin(t))/t)dt let f(x) =∫_0 ^(1 )  ((arcsin(xt))/t)dt (x>0)  f^′ (x) =∫_0 ^1   (t/(t(√(1−x^2 t^2 )))) dt =∫_0 ^1  (dt/(√(1−(xt)^2 ))) =_(xt =sinα)   ∫_0 ^(arcsinx)  (1/(x cosα))×(1/x)cosα dα  =((arcsin(x))/x^2 )   ⇒ f(x) =∫_1 ^x  ((arcsin(u))/u^2 ) du +c  =[−(1/u) arcsinu]_1 ^x  −∫_1 ^x  (−(1/u))×(1/(√(1−u^2 ))) du+c  =(π/2) −((arcsinx)/x) +∫_1 ^x  (du/(u(√(1−u^2 )))) but  ∫_1 ^x  (du/(u(√(1−u^2 )))) =_(u=sinz)     ∫_(π/2) ^(arcsinx)   ((cosz)/(sinz cosz)) dz =∫_(π/2) ^(arcsinx)  (dz/(sinz))  =_(tan((z/2)) =λ)      ∫_∞ ^(tan(((arcsinx)/2)))  ((2dλ)/((1+λ^2 )×((2λ)/(1+λ^2 )))) =−∫_(tan(((arcsinx)/2)))   (dλ/λ)  =−ln∣tan(((arcsinx)/2))∣ ⇒  f(x) =(π/2) −((arcsinx)/x) −ln∣tan(((arcsinx)/2))∣ +c  f(1) =c =∫_0 ^1  ((arcsint)/t) dt ⇒  f(x) =(π/2) −((arcsinx)/x) −ln∣tan(((arcsinx)/2))∣ +∫_0 ^1  ((arcsint)/t) dt for x>0  f((1/x)) =(π/2)−(((π/2)−arcosx)/x) −ln∣tan((((π/2)−arcosx)/2))∣+∫_0 ^1  ((arcsint)/t)dt  =(π/2)−(π/(2x)) +((arcosx)/x)−ln∣tan((π/4)−((arcosx)/2))∣ +∫_0 ^1  ((arcsint)/t) dt  ...be continued...

lettakeatryI=0arcsin(ex)dxchangementex=tgivex=lntI=01arcsin(t)dtt=01arcsin(t)tdtletf(x)=01arcsin(xt)tdt(x>0)f(x)=01tt1x2t2dt=01dt1(xt)2=xt=sinα0arcsinx1xcosα×1xcosαdα=arcsin(x)x2f(x)=1xarcsin(u)u2du+c=[1uarcsinu]1x1x(1u)×11u2du+c=π2arcsinxx+1xduu1u2but1xduu1u2=u=sinzπ2arcsinxcoszsinzcoszdz=π2arcsinxdzsinz=tan(z2)=λtan(arcsinx2)2dλ(1+λ2)×2λ1+λ2=tan(arcsinx2)dλλ=lntan(arcsinx2)f(x)=π2arcsinxxlntan(arcsinx2)+cf(1)=c=01arcsinttdtf(x)=π2arcsinxxlntan(arcsinx2)+01arcsinttdtforx>0f(1x)=π2π2arcosxxlntan(π2arcosx2)+01arcsinttdt=π2π2x+arcosxxlntan(π4arcosx2)+01arcsinttdt...becontinued...

Commented by mathmax by abdo last updated on 23/May/20

let find ∫_0 ^1  ((arcsint)/t) dt at form of serie  we have  arcsint =Σ_(n=0) ^∞   (((2n)!)/((2n+1)2^(2n) (n!)^2 )) t^(2n+1)   =t +((2!)/(3.4.)) t^3  +((4!)/(5.16(2!)^2 )) +.... ⇒((arcsint)/(t )) =Σ_(n=0) ^∞  (((2n)!)/((2n+1)2^(2n) (n!)^2 )) t^(2n)  ⇒  ∫_0 ^1  ((arcsint)/t) dt  =Σ_(n=0) ^∞  (((2n)!)/((2n+1)^2 2^(2n) (n!)^2 ))  =1+((2!)/(3^2 .2^2 (1!)^2 )) +((4!)/(5^2 .2^4 (2!)^2 )) +....

letfind01arcsinttdtatformofseriewehavearcsint=n=0(2n)!(2n+1)22n(n!)2t2n+1=t+2!3.4.t3+4!5.16(2!)2+....arcsintt=n=0(2n)!(2n+1)22n(n!)2t2n01arcsinttdt=n=0(2n)!(2n+1)222n(n!)2=1+2!32.22(1!)2+4!52.24(2!)2+....

Commented by EmericGent last updated on 23/May/20

I used a much easier way (I show you my start)

Commented by EmericGent last updated on 23/May/20

Commented by mathmax by abdo last updated on 23/May/20

A(y) =∫_0 ^y  arcsin(e^(−x) )dx   by parts  A(y) =[ x arcsin(e^(−x) )]_0 ^y  −∫_0 ^y  x (((−e^(−x) )/(√(1−e^(−2x) ))))dx  =y arcsin(e^(−y) ) +∫_0 ^y  ((xe^(−x) )/(√(1−e^(−2x) )))dx    e^(−x)  =sinα ⇒−x =ln(sinα)⇒  ∫_0 ^y  ((xe^(−x) )/(√(1−e^(−2x) )))dx =∫_(π/2) ^(arcsin(e^(−y) ))   (((ln(sinα))sinα)/(cosα))×((cosα)/(sinα)) dα  =−∫_(arcsin(e^(−y) )) ^(π/2)  ln(sinα)dα ⇒A(y) =y arcsin(e^(−y) )−∫_(arcsin(e^(−y) )) ^(π/2)  ln(sinα)dα  lim_(y→+∞)  A(y) =−∫_0 ^(π/2)  ln(sinα)dα =−(−(π/2)ln(2))  ⇒  ∫_0 ^∞ arcsin(e^(−x) )dx =(π/2)ln(2)

A(y)=0yarcsin(ex)dxbypartsA(y)=[xarcsin(ex)]0y0yx(ex1e2x)dx=yarcsin(ey)+0yxex1e2xdxex=sinαx=ln(sinα)0yxex1e2xdx=π2arcsin(ey)(ln(sinα))sinαcosα×cosαsinαdα=arcsin(ey)π2ln(sinα)dαA(y)=yarcsin(ey)arcsin(ey)π2ln(sinα)dαlimy+A(y)=0π2ln(sinα)dα=(π2ln(2))0arcsin(ex)dx=π2ln(2)

Commented by mathmax by abdo last updated on 23/May/20

your method is correct sir thanks.

yourmethodiscorrectsirthanks.

Commented by EmericGent last updated on 23/May/20

I did the second and the third by the same way (actually I'm a boy)

Answered by abdomathmax last updated on 23/May/20

A(y) =∫_0 ^y  arcos(1−2e^(−x) )dx  by parts  A(y) =[x arcos(1−2e^(−x) )]_0 ^y +∫_0 ^y  x×((2e^(−x) )/(√(1−(1−2e^(−x) )^2 )))dx  =y arcos(1−2e^(−y) ) +2 ∫_0 ^y  ((xe^(−x) )/(√(1−(1−2e^(−x) )^2 )))dx  changement 1−2e^(−x)  = cosα give  2e^(−x)  =1−cosα ⇒e^(−x)  =((1−cosα)/2) ⇒x=−ln(((1−cosα)/2))  ⇒dx =−((sinα)/(1−cosα)) ⇒  ∫_0 ^y  ((xe^(−x) )/(√(1−(1−2e^(−x) )^2 )))dx  =∫_π ^(arcos(1−2e^(−y) )) −ln(((1−cosα)/2))×((1−cosα)/2)×(−((sinα)/(1−cosα)))×(1/(sinα))dα  =(1/2)∫_π ^(arcos(1−2e^(−y) ))  ln(((1−cosα)/2))dα  =(1/2) ∫_π ^(arcos(1−2e^(−y) )) 2ln(cos((α/2)))dα  =_((α/2)=t)   2∫_(π/2) ^((1/2)arcos(1−2e^(−y) ))   ln(cost) dt  →2∫_(π/2) ^0  ln(cost)dt =−2∫_0 ^(π/2) ln(cost)dt =−2(−(π/2)ln2)  =πln(2) also yarcos(1−2e^(−y) )→0 ⇒  ∫_0 ^∞  arcos(1−2e^(−x) )dx =lim_(y→+∞) A(y) =πln(2)

A(y)=0yarcos(12ex)dxbypartsA(y)=[xarcos(12ex)]0y+0yx×2ex1(12ex)2dx=yarcos(12ey)+20yxex1(12ex)2dxchangement12ex=cosαgive2ex=1cosαex=1cosα2x=ln(1cosα2)dx=sinα1cosα0yxex1(12ex)2dx=πarcos(12ey)ln(1cosα2)×1cosα2×(sinα1cosα)×1sinαdα=12πarcos(12ey)ln(1cosα2)dα=12πarcos(12ey)2ln(cos(α2))dα=α2=t2π212arcos(12ey)ln(cost)dt2π20ln(cost)dt=20π2ln(cost)dt=2(π2ln2)=πln(2)alsoyarcos(12ey)00arcos(12ex)dx=limy+A(y)=πln(2)

Commented by EmericGent last updated on 23/May/20

Commented by EmericGent last updated on 23/May/20

Actually you did a small mistake (forgot a *2 somewhere)

Commented by mathmax by abdo last updated on 24/May/20

error at final line  we have ∫_0 ^y   ((xe^(−x) )/(√(1−(1−2e^(−x) )^2 )))dx→πln2 and  we have A(y) =y arcos(1−2e^(−x) )+2 ∫_0 ^y  ((xe^(−x) )/(√(1−(1−2e^(−x) )^2 )))→0+2πln2  ⇒∫_0 ^∞  arcos(1−2e^(−x) )dx =2πln(2)

erroratfinallinewehave0yxex1(12ex)2dxπln2andwehaveA(y)=yarcos(12ex)+20yxex1(12ex)20+2πln20arcos(12ex)dx=2πln(2)

Answered by mathmax by abdo last updated on 24/May/20

I =∫_0 ^∞  arcos(1−e^(−x) )dx  let I(ξ) =∫_0 ^ξ  arcos(1−e^(−x) )dx  by parts  I(ξ) =[x arcos(1−e^(−x) )]_0 ^ξ  −∫_0 ^ξ  x (−(e^(−x) /(√(1−(1−e^(−x) )^2 ))))dx  =ξ arcos(1−e^(−ξ) ) +∫_0 ^ξ   ((xe^(−x) )/(√(1−(1−e^(−x) )^2 ))) dx  changement 1−e^(−x) =cosα  give e^(−x)  =1−cosα ⇒x=−ln(1−cosα)  ⇒(dx/dα) =−((sinα)/(1−cosα)) ⇒  ∫_0 ^ξ   ((xe^(−x) )/(√(1−(1−e^(−x) )^2 )))dx =∫_(π/2) ^(arcos(1−e^(−ξ) ))   ln(1−cosα)×(1−cosα)×(1/(sinα))×((sinα)/(1−cosα))dα  =−∫_(arcos(1−e^(−ξ) )) ^(π/2)  ln(2sin^2 ((α/2)))dα  =−ln(2)((π/2) −arcos(1−e^(−ξ) ))−2 ∫_0 ^(π/2)  ln(sin((α/2)))dα ((α/2)=u)  =−(π/2)ln(2)+ln(2)arcos(1−e^(−ξ) )−2 ∫_0 ^(π/4)  ln(u)(2du)  =−(π/2)ln(2) +ln(2)arcos(1−e^(−ξ) )−4∫_0 ^(π/4)  ln(u)du  →−(π/2)ln(2)−4 ∫_0 ^(π/4) ln(u)du  rest to calculate ∫_0 ^(π/4)  ln(u)du..  be continued...

I=0arcos(1ex)dxletI(ξ)=0ξarcos(1ex)dxbypartsI(ξ)=[xarcos(1ex)]0ξ0ξx(ex1(1ex)2)dx=ξarcos(1eξ)+0ξxex1(1ex)2dxchangement1ex=cosαgiveex=1cosαx=ln(1cosα)dxdα=sinα1cosα0ξxex1(1ex)2dx=π2arcos(1eξ)ln(1cosα)×(1cosα)×1sinα×sinα1cosαdα=arcos(1eξ)π2ln(2sin2(α2))dα=ln(2)(π2arcos(1eξ))20π2ln(sin(α2))dα(α2=u)=π2ln(2)+ln(2)arcos(1eξ)20π4ln(u)(2du)=π2ln(2)+ln(2)arcos(1eξ)40π4ln(u)duπ2ln(2)40π4ln(u)duresttocalculate0π4ln(u)du..becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com