Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 95106 by bobhans last updated on 23/May/20

 { ((x+y+z = 7)),((x^2 +y^2 +z^2  = 49)),((x^3 +y^3 +z^3  = 7)) :}  find x; y ; z

$$\begin{cases}{{x}+{y}+{z}\:=\:\mathrm{7}}\\{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \:=\:\mathrm{49}}\\{{x}^{\mathrm{3}} +{y}^{\mathrm{3}} +{z}^{\mathrm{3}} \:=\:\mathrm{7}}\end{cases} \\ $$$${find}\:{x};\:\mathrm{y}\:;\:{z}\: \\ $$

Answered by john santu last updated on 23/May/20

(1)x^3 +y^3 +z^3 −3xyz = (x+y+z)(x^2 +y^2 +z^2 −(xy+xz+yz))  ⇒ 7−3xyz = 7(49−(xy+xz+yz))  (2) (x+y+z)^2 = x^2 +y^2 +z^2 +2(xy+xz+yz)  ⇒49 = 49 +2(xy+xz+yz)  xy+xz+yz = 0  so we get 7−3xyz = 7×49  xyz = − 112

$$\left(\mathrm{1}\right){x}^{\mathrm{3}} +{y}^{\mathrm{3}} +{z}^{\mathrm{3}} −\mathrm{3}{xyz}\:=\:\left({x}+{y}+{z}\right)\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} −\left({xy}+{xz}+{yz}\right)\right) \\ $$$$\Rightarrow\:\mathrm{7}−\mathrm{3}{xyz}\:=\:\mathrm{7}\left(\mathrm{49}−\left({xy}+{xz}+{yz}\right)\right) \\ $$$$\left(\mathrm{2}\right)\:\left({x}+{y}+{z}\right)^{\mathrm{2}} =\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} +\mathrm{2}\left({xy}+{xz}+{yz}\right) \\ $$$$\Rightarrow\mathrm{49}\:=\:\mathrm{49}\:+\mathrm{2}\left({xy}+{xz}+{yz}\right) \\ $$$${xy}+{xz}+{yz}\:=\:\mathrm{0} \\ $$$${so}\:{we}\:{get}\:\mathrm{7}−\mathrm{3}{xyz}\:=\:\mathrm{7}×\mathrm{49} \\ $$$${xyz}\:=\:−\:\mathrm{112}\: \\ $$

Commented by 1549442205 last updated on 23/May/20

That is not fully answer!I have the following answer:  We have 2(xy+yz+zx)=(x+y+z)^2 −(x^2 +y^2   +z^2 )=7^2 −49=0→xy+yz+zx=0→yz+  (y+z)x=0→yz+(7−x)x=0→yz=x^2 −7x(1)  On the other hands,x^3 +y^3 +z^3 =7⇔  x^3 +[(y+z)^3 −3yz(y+z)]=7⇔x^3 +[(7−x)^3 −  3(x^2 −7x)(7−x)]=7⇔x^3 +[343−147x+  21x^2 −x^3 −3(−x^3 +14x^2 −49x)]=7⇔  3x^3 −21x^2 +336=0⇔x^3 −7x^2 +112=0.  Putting x=(1/t) we get  112t^3 −7t+1=0.Multiplying two sides of  the equation by 196=7^2 .4 and note 112=  7.4^2  then set u=28t we get PT: u^3 −49u+  196=0(1)  Put u=−(m+n)→u+m+n=0.Using the  equality a^3 +b^3 +c^3 −3abc=(a+b+c)(a^2 +  b^2 +c^2 −ab−bc−ca) we have u^3 +m^3 +n^3 −  3umn=0(2).From (1) and (2) we have:  m^3 +n^3 =196(3),mn=((49)/3).It follows   (m^3 −n^3 )^2 =(m^3 +n^3 )^2 −4(mn)^3 =196^2 −  4.(((49)/3))^3 =(((98)/9)(√(177)))^2 ⇒m^3 −n^3 =((98)/9)(√(177))(2)  .Hence,from (1),(2)we get m^3 =(  ((98(√(177)))/9)+196)/2 and n^3 =(196−((98(√(177)))/9))/2  ⇒u=−(m+n)=  −[(^3 (√((1764+98(√(177)))/(18))) +^3 (√((1764−98(√(177)))/(18))))  Since u=28tand t=(1/x)⇒x=((28)/u)=−(1/7)[^3 (√((((1764+98(√(177)))/(18)))^2 ))−((49)/3)+^3 (√((((1764−98(√(177)))/(18)))^2 ))]  Replace this value of x into the equations:  x+y+z=7 and x(y+z)+yz=0 we find y,z   which are image numbers

$$\mathrm{That}\:\mathrm{is}\:\mathrm{not}\:\mathrm{fully}\:\mathrm{answer}!\mathrm{I}\:\mathrm{have}\:\mathrm{the}\:\mathrm{following}\:\mathrm{answer}: \\ $$$$\mathrm{We}\:\mathrm{have}\:\mathrm{2}\left(\mathrm{xy}+\mathrm{yz}+\mathrm{zx}\right)=\left(\mathrm{x}+\mathrm{y}+\mathrm{z}\right)^{\mathrm{2}} −\left(\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right. \\ $$$$\left.+\mathrm{z}^{\mathrm{2}} \right)=\mathrm{7}^{\mathrm{2}} −\mathrm{49}=\mathrm{0}\rightarrow\mathrm{xy}+\mathrm{yz}+\mathrm{zx}=\mathrm{0}\rightarrow\mathrm{yz}+ \\ $$$$\left(\mathrm{y}+\mathrm{z}\right)\mathrm{x}=\mathrm{0}\rightarrow\mathrm{yz}+\left(\mathrm{7}−\mathrm{x}\right)\mathrm{x}=\mathrm{0}\rightarrow\mathrm{yz}=\mathrm{x}^{\mathrm{2}} −\mathrm{7x}\left(\mathrm{1}\right) \\ $$$$\mathrm{On}\:\mathrm{the}\:\mathrm{other}\:\mathrm{hands},\mathrm{x}^{\mathrm{3}} +\mathrm{y}^{\mathrm{3}} +\mathrm{z}^{\mathrm{3}} =\mathrm{7}\Leftrightarrow \\ $$$$\mathrm{x}^{\mathrm{3}} +\left[\left(\mathrm{y}+\mathrm{z}\right)^{\mathrm{3}} −\mathrm{3yz}\left(\mathrm{y}+\mathrm{z}\right)\right]=\mathrm{7}\Leftrightarrow\mathrm{x}^{\mathrm{3}} +\left[\left(\mathrm{7}−\mathrm{x}\right)^{\mathrm{3}} −\right. \\ $$$$\left.\mathrm{3}\left(\mathrm{x}^{\mathrm{2}} −\mathrm{7x}\right)\left(\mathrm{7}−\mathrm{x}\right)\right]=\mathrm{7}\Leftrightarrow\mathrm{x}^{\mathrm{3}} +\left[\mathrm{343}−\mathrm{147x}+\right. \\ $$$$\left.\mathrm{21x}^{\mathrm{2}} −\mathrm{x}^{\mathrm{3}} −\mathrm{3}\left(−\mathrm{x}^{\mathrm{3}} +\mathrm{14x}^{\mathrm{2}} −\mathrm{49x}\right)\right]=\mathrm{7}\Leftrightarrow \\ $$$$\mathrm{3x}^{\mathrm{3}} −\mathrm{21x}^{\mathrm{2}} +\mathrm{336}=\mathrm{0}\Leftrightarrow\mathrm{x}^{\mathrm{3}} −\mathrm{7x}^{\mathrm{2}} +\mathrm{112}=\mathrm{0}. \\ $$$$\mathrm{Putting}\:\mathrm{x}=\frac{\mathrm{1}}{\mathrm{t}}\:\mathrm{we}\:\mathrm{get} \\ $$$$\mathrm{112t}^{\mathrm{3}} −\mathrm{7t}+\mathrm{1}=\mathrm{0}.\mathrm{Multiplying}\:\mathrm{two}\:\mathrm{sides}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{equation}\:\mathrm{by}\:\mathrm{196}=\mathrm{7}^{\mathrm{2}} .\mathrm{4}\:\mathrm{and}\:\mathrm{note}\:\mathrm{112}= \\ $$$$\mathrm{7}.\mathrm{4}^{\mathrm{2}} \:\mathrm{then}\:\mathrm{set}\:\mathrm{u}=\mathrm{28t}\:\mathrm{we}\:\mathrm{get}\:\mathrm{PT}:\:\mathrm{u}^{\mathrm{3}} −\mathrm{49u}+ \\ $$$$\mathrm{196}=\mathrm{0}\left(\mathrm{1}\right) \\ $$$$\mathrm{Put}\:\mathrm{u}=−\left(\mathrm{m}+\mathrm{n}\right)\rightarrow\mathrm{u}+\mathrm{m}+\mathrm{n}=\mathrm{0}.\mathrm{Using}\:\mathrm{the} \\ $$$$\mathrm{equality}\:\mathrm{a}^{\mathrm{3}} +\mathrm{b}^{\mathrm{3}} +\mathrm{c}^{\mathrm{3}} −\mathrm{3abc}=\left(\mathrm{a}+\mathrm{b}+\mathrm{c}\right)\left(\mathrm{a}^{\mathrm{2}} +\right. \\ $$$$\left.\mathrm{b}^{\mathrm{2}} +\mathrm{c}^{\mathrm{2}} −\mathrm{ab}−\mathrm{bc}−\mathrm{ca}\right)\:\mathrm{we}\:\mathrm{have}\:\mathrm{u}^{\mathrm{3}} +\mathrm{m}^{\mathrm{3}} +\mathrm{n}^{\mathrm{3}} − \\ $$$$\mathrm{3umn}=\mathrm{0}\left(\mathrm{2}\right).\mathrm{From}\:\left(\mathrm{1}\right)\:\mathrm{and}\:\left(\mathrm{2}\right)\:\mathrm{we}\:\mathrm{have}: \\ $$$$\mathrm{m}^{\mathrm{3}} +\mathrm{n}^{\mathrm{3}} =\mathrm{196}\left(\mathrm{3}\right),\mathrm{mn}=\frac{\mathrm{49}}{\mathrm{3}}.\mathrm{It}\:\mathrm{follows}\: \\ $$$$\left(\mathrm{m}^{\mathrm{3}} −\mathrm{n}^{\mathrm{3}} \right)^{\mathrm{2}} =\left(\mathrm{m}^{\mathrm{3}} +\mathrm{n}^{\mathrm{3}} \right)^{\mathrm{2}} −\mathrm{4}\left(\mathrm{mn}\right)^{\mathrm{3}} =\mathrm{196}^{\mathrm{2}} − \\ $$$$\mathrm{4}.\left(\frac{\mathrm{49}}{\mathrm{3}}\right)^{\mathrm{3}} =\left(\frac{\mathrm{98}}{\mathrm{9}}\sqrt{\mathrm{177}}\right)^{\mathrm{2}} \Rightarrow\mathrm{m}^{\mathrm{3}} −\mathrm{n}^{\mathrm{3}} =\frac{\mathrm{98}}{\mathrm{9}}\sqrt{\mathrm{177}}\left(\mathrm{2}\right) \\ $$$$.\mathrm{Hence},\mathrm{from}\:\left(\mathrm{1}\right),\left(\mathrm{2}\right)\mathrm{we}\:\mathrm{get}\:\mathrm{m}^{\mathrm{3}} =\left(\right. \\ $$$$\left.\frac{\mathrm{98}\sqrt{\mathrm{177}}}{\mathrm{9}}+\mathrm{196}\right)/\mathrm{2}\:\mathrm{and}\:\mathrm{n}^{\mathrm{3}} =\left(\mathrm{196}−\frac{\mathrm{98}\sqrt{\mathrm{177}}}{\mathrm{9}}\right)/\mathrm{2} \\ $$$$\Rightarrow\mathrm{u}=−\left(\mathrm{m}+\mathrm{n}\right)= \\ $$$$−\left[\left(\:^{\mathrm{3}} \sqrt{\frac{\mathrm{1764}+\mathrm{98}\sqrt{\mathrm{177}}}{\mathrm{18}}}\:+^{\mathrm{3}} \sqrt{\frac{\mathrm{1764}−\mathrm{98}\sqrt{\mathrm{177}}}{\mathrm{18}}}\right)\right. \\ $$$$\mathrm{Since}\:\mathrm{u}=\mathrm{28tand}\:\mathrm{t}=\frac{\mathrm{1}}{\mathrm{x}}\Rightarrow\mathrm{x}=\frac{\mathrm{28}}{\mathrm{u}}=−\frac{\mathrm{1}}{\mathrm{7}}\left[^{\mathrm{3}} \sqrt{\left(\frac{\mathrm{1764}+\mathrm{98}\sqrt{\mathrm{177}}}{\mathrm{18}}\right)^{\mathrm{2}} }−\frac{\mathrm{49}}{\mathrm{3}}+^{\mathrm{3}} \sqrt{\left(\frac{\mathrm{1764}−\mathrm{98}\sqrt{\mathrm{177}}}{\mathrm{18}}\right)^{\mathrm{2}} }\right] \\ $$$$\mathrm{Replace}\:\mathrm{this}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x}\:\mathrm{into}\:\mathrm{the}\:\mathrm{equations}: \\ $$$$\mathrm{x}+\mathrm{y}+\mathrm{z}=\mathrm{7}\:\mathrm{and}\:\mathrm{x}\left(\mathrm{y}+\mathrm{z}\right)+\mathrm{yz}=\mathrm{0}\:\mathrm{we}\:\mathrm{find}\:\mathrm{y},\mathrm{z}\: \\ $$$$\mathrm{which}\:\mathrm{are}\:\mathrm{image}\:\mathrm{numbers} \\ $$$$ \\ $$

Commented by john santu last updated on 23/May/20

what your answer?

$$\mathrm{what}\:\mathrm{your}\:\mathrm{answer}? \\ $$

Commented by bobhans last updated on 23/May/20

waw....superb sir

$$\mathrm{waw}....\mathrm{superb}\:\mathrm{sir} \\ $$

Answered by mr W last updated on 23/May/20

e_1 =p_1 =x+y+z=7  2e_2 =p_1 ^2 −p_2 =7^2 −49=0 ⇒xy+yz+zx=0  3e_3 =(1/2)p_1 ^3 −(3/2)p_1 p_2 +p_3 =(7^3 /2)−((3×7×49)/2)+7=−336 ⇒xyz=−112  x,y,z are roots of  t^3 −7t^2 +112=0  ...

$${e}_{\mathrm{1}} ={p}_{\mathrm{1}} ={x}+{y}+{z}=\mathrm{7} \\ $$$$\mathrm{2}{e}_{\mathrm{2}} ={p}_{\mathrm{1}} ^{\mathrm{2}} −{p}_{\mathrm{2}} =\mathrm{7}^{\mathrm{2}} −\mathrm{49}=\mathrm{0}\:\Rightarrow{xy}+{yz}+{zx}=\mathrm{0} \\ $$$$\mathrm{3}{e}_{\mathrm{3}} =\frac{\mathrm{1}}{\mathrm{2}}{p}_{\mathrm{1}} ^{\mathrm{3}} −\frac{\mathrm{3}}{\mathrm{2}}{p}_{\mathrm{1}} {p}_{\mathrm{2}} +{p}_{\mathrm{3}} =\frac{\mathrm{7}^{\mathrm{3}} }{\mathrm{2}}−\frac{\mathrm{3}×\mathrm{7}×\mathrm{49}}{\mathrm{2}}+\mathrm{7}=−\mathrm{336}\:\Rightarrow{xyz}=−\mathrm{112} \\ $$$${x},{y},{z}\:{are}\:{roots}\:{of} \\ $$$${t}^{\mathrm{3}} −\mathrm{7}{t}^{\mathrm{2}} +\mathrm{112}=\mathrm{0} \\ $$$$... \\ $$

Commented by bobhans last updated on 23/May/20

alright, the answer is very ′smart′

$$\mathrm{alright},\:\mathrm{the}\:\mathrm{answer}\:\mathrm{is}\:\mathrm{very}\:'\mathrm{smart}'\: \\ $$

Commented by bobhans last updated on 23/May/20

not finish ?

$$\mathrm{not}\:\mathrm{finish}\:? \\ $$

Commented by mr W last updated on 23/May/20

the rest is just “stupid” calculation   with values. you can do it when you  like.

$${the}\:{rest}\:{is}\:{just}\:``{stupid}''\:{calculation}\: \\ $$$${with}\:{values}.\:{you}\:{can}\:{do}\:{it}\:{when}\:{you} \\ $$$${like}. \\ $$

Commented by mr W last updated on 23/May/20

i think the main point of this question  is to get that x,y,z are the three roots  of eqn. t^3 −7t^2 +112=0. to calculate  the roots (one real and two complex)  of the cubic eqn.  is a hard but also easy  diligence work.

$${i}\:{think}\:{the}\:{main}\:{point}\:{of}\:{this}\:{question} \\ $$$${is}\:{to}\:{get}\:{that}\:{x},{y},{z}\:{are}\:{the}\:{three}\:{roots} \\ $$$${of}\:{eqn}.\:{t}^{\mathrm{3}} −\mathrm{7}{t}^{\mathrm{2}} +\mathrm{112}=\mathrm{0}.\:{to}\:{calculate} \\ $$$${the}\:{roots}\:\left({one}\:{real}\:{and}\:{two}\:{complex}\right) \\ $$$${of}\:{the}\:{cubic}\:{eqn}.\:\:{is}\:{a}\:{hard}\:{but}\:{also}\:{easy} \\ $$$${diligence}\:{work}. \\ $$

Commented by 1549442205 last updated on 23/May/20

This equation has unique real root   t=((−1)/7)[^3 (√((((1764+98(√(177)))/(18)))^2 ))−((49)/3)+^3 (√((((1764−98(√(177)))/(18)))^2 ))]like I done above.

$$\mathrm{This}\:\mathrm{equation}\:\mathrm{has}\:\mathrm{unique}\:\mathrm{real}\:\mathrm{root}\: \\ $$$$\mathrm{t}=\frac{−\mathrm{1}}{\mathrm{7}}\left[^{\mathrm{3}} \sqrt{\left(\frac{\mathrm{1764}+\mathrm{98}\sqrt{\mathrm{177}}}{\mathrm{18}}\right)^{\mathrm{2}} }−\frac{\mathrm{49}}{\mathrm{3}}+^{\mathrm{3}} \sqrt{\left(\frac{\mathrm{1764}−\mathrm{98}\sqrt{\mathrm{177}}}{\mathrm{18}}\right)^{\mathrm{2}} }\right]\mathrm{like}\:\mathrm{I}\:\mathrm{done}\:\mathrm{above}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com