Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 95119 by Mr.D.N. last updated on 27/May/20

 Solve the differential equations:−  ★.(x sin x+cos x)(d^2 y/dx^2 ) −x cos x(dy/dx) +  y cos x=0.

Solvethedifferentialequations:.(xsinx+cosx)d2ydx2xcosxdydx+ycosx=0.

Answered by niroj last updated on 23/May/20

  2. (x sin x + cos x )(d^2 y/dx^2 ) − x cos x (dy/dx) + y cos x=0   Sol^n :      (d^2 y/dx^2 ) − ((x cos x)/(x sin x+cos x)) (dy/dx) + ((cos x)/(x sin x+cos x)) y=0   We know the form of variable coefficient with constant If Part of CF is    known,then we can use of special cases:     (d^2 y/dx^2 )+P(dy/dx)+Qy =R..   Let,  P= − ((x cos x)/(x sinx+ cos x))      Q=  ((cos x)/(x sin x+cos x)) and R=0   ∴P+Qx=0    −((x cos x)/(x sin x+cos x)) +  ((x cos x)/(x sin x+cos x))=0  If P+Qx=0, then part of CF  u= x    y=uv    y=xv....(i)    Special case:  (d^2 v/dx^2 )+(p+(2/u)(du/dx))(dv/dx)=(R/u)     (d^2 v/dx^2 )+(−((x cos x)/(x sin x+cos x)) + (2/x))(dv/dx)= (0/x)   Put , (dv/dx)=t  ⇒ (d^2 v/dx^2 )= (dt/dx)      (dt/dx) +((2/x) − ((x cos x)/(x sinx+cos x)))t=0    IF= e^(∫ ((2/x) − ((x cos x)/(x sinx+ cos x)))dx)          = e^((2log x −log (x sin x +cos x))          =  e^(log x^2 ) .e^(log (x sin x +cos x)^(−1) )         = x^(2 ) . (1/(x sin x +cos x))    t. (x^2 /(x sin x+cos x)) = ∫ (x^2 /(x sinx+cos x)).0 dx+C_1     t (x^2 /(x sinx+cos x)) = C_1     t  =  ((x sin x+ cos x)/x^2 )C_1     (dv/dx) = ((x sin x+cos x)/x^2 )C_1       ∫ dv  = C_1  ∫ ((xsin x+cos x)/x^2 )dx         (x sin x+cos x)(d/dx)     sinx+xcosx−sinx =xcos x    ∫dv = C_1 [ (xsinx+cos x)∫(1/x^2 )−∫{(xsinx +cos x)(d/dx)∫(1/x^2 )dx}dx    v= C_1 [ −(x sinx+cos x)(1/x) +∫xcos x(1/x)dx +C_2     v= C_1 [−(xsin x+cos x)(1/x)+sinx]+C_2    put value of v in eq^n (i)    y= xv       =C_1   [−x(x sinx+cos x)(1/x)+x sin x]+C_2 x       = C_1 [ −xsinx −cos x+ x sinx]+C_2 x        =− C_1 cos x+C_2 x    ∴ y = −C_1 cos x+C_2 x  ∴ y  Whis is required differential equation.

2.(xsinx+cosx)d2ydx2xcosxdydx+ycosx=0Soln:d2ydx2xcosxxsinx+cosxdydx+cosxxsinx+cosxy=0WeknowtheformofvariablecoefficientwithconstantIfPartofCFisknown,thenwecanuseofspecialcases:d2ydx2+Pdydx+Qy=R..Let,P=xcosxxsinx+cosxQ=cosxxsinx+cosxandR=0P+Qx=0xcosxxsinx+cosx+xcosxxsinx+cosx=0IfP+Qx=0,thenpartofCFu=xy=uvy=xv....(i)Specialcase:d2vdx2+(p+2ududx)dvdx=Rud2vdx2+(xcosxxsinx+cosx+2x)dvdx=0xPut,dvdx=td2vdx2=dtdxdtdx+(2xxcosxxsinx+cosx)t=0IF=e(2xxcosxxsinx+cosx)dx=e(2logxlog(xsinx+cosx)=elogx2.elog(xsinx+cosx)1=x2.1xsinx+cosxt.x2xsinx+cosx=x2xsinx+cosx.0dx+C1tx2xsinx+cosx=C1t=xsinx+cosxx2C1dvdx=xsinx+cosxx2C1dv=C1xsinx+cosxx2dx(xsinx+cosx)ddxsinx+xcosxsinx=xcosxdv=C1[(xsinx+cosx)1x2{(xsinx+cosx)ddx1x2dx}dxv=C1[(xsinx+cosx)1x+xcosx1xdx+C2v=C1[(xsinx+cosx)1x+sinx]+C2putvalueofvineqn(i)y=xv=C1[x(xsinx+cosx)1x+xsinx]+C2x=C1[xsinxcosx+xsinx]+C2x=C1cosx+C2xy=C1cosx+C2xyWhisisrequireddifferentialequation.

Commented by Mr.D.N. last updated on 23/May/20

outstanding aspect ����������

Commented by i jagooll last updated on 23/May/20

coll man. ������

Commented by niroj last updated on 23/May/20

����

Commented by peter frank last updated on 24/May/20

thank you

thankyou

Terms of Service

Privacy Policy

Contact: info@tinkutara.com