Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 95216 by mathmax by abdo last updated on 24/May/20

calculste Σ_(n=0) ^∞    (n/((2n+1)^2 (n+3)))

calculsten=0n(2n+1)2(n+3)

Answered by abdomathmax last updated on 25/May/20

let S_n =Σ_(k=0) ^n  (k/((k+3)(2k+1)^2 ))   let decompose F(x) =(x/((x+3)(2x+1)^2 ))  F(x) =(a/(x+3)) +(b/((2x+1))) +(c/((2x+1)^2 ))  a =((−3)/((−5)^2 )) =−(3/(25))  c =((−1)/(2(3−(1/2)))) =−(1/5)  lim_(x→+∞) xF(x) =0 =a+(b/2) ⇒(b/2) =(3/(25)) ⇒b =(6/(25)) ⇒  S_n =−(3/(25))Σ_(k=0) ^n  (1/(k+3)) +(6/(25))Σ_(k=0) ^n  (1/(2k+1)) −(1/5)Σ_(k=0) ^n  (1/((2k+1)^2 ))  we have Σ_(k=0) ^n  (1/(k+3)) =Σ_(k=3) ^(n+3)  (1/k) =H_(n+3) −(3/2)  Σ_(k=0) ^n  (1/(2k+1)) =H_(2n+1) −(1/2)H_n   ⇒ S_n =−(3/(25))(H_(n+3) −(3/2))+(6/(25))(H_(2n+1) −(1/2)H_n )  −(1/5)Σ_(k=0) ^n  (1/((2k+1)^2 ))  =(3/(25))(H_(2n+1) −H_(n+3) )+(3/(25))(H_(2n+1) −H_n )−(1/5)Σ_(k=0) ^n  (1/((2k+1)^2 )) +(9/(50))  ⇒lim S_n =(3/(25))ln(2)+(3/(25))ln(2)−(1/5)Σ_(k=0) ^∞  (1/((2k+1)^2 ))  =(6/(25))ln(2)+(9/(50)) −(1/5)Σ_(k=0) ^∞  (1/((2k+1)^2 ))  (π^2 /6) =Σ_(k=1) ^∞  (1/k^2 ) =Σ_(k=1) ^∞  (1/(4k^2 )) +Σ_(k=0) ^∞  (1/((2k+1)^2 )) ⇒  Σ_(k=0) ^∞  (1/((2k+1)^2 )) =(π^2 /6)−(1/4)×(π^2 /6) =(3/4)×(π^2 /6) =(π^2 /8) ⇒  S =(6/(25))ln(2)+(9/(50))−(π^2 /(40))

letSn=k=0nk(k+3)(2k+1)2letdecomposeF(x)=x(x+3)(2x+1)2F(x)=ax+3+b(2x+1)+c(2x+1)2a=3(5)2=325c=12(312)=15limx+xF(x)=0=a+b2b2=325b=625Sn=325k=0n1k+3+625k=0n12k+115k=0n1(2k+1)2wehavek=0n1k+3=k=3n+31k=Hn+332k=0n12k+1=H2n+112HnSn=325(Hn+332)+625(H2n+112Hn)15k=0n1(2k+1)2=325(H2n+1Hn+3)+325(H2n+1Hn)15k=0n1(2k+1)2+950limSn=325ln(2)+325ln(2)15k=01(2k+1)2=625ln(2)+95015k=01(2k+1)2π26=k=11k2=k=114k2+k=01(2k+1)2k=01(2k+1)2=π2614×π26=34×π26=π28S=625ln(2)+950π240

Terms of Service

Privacy Policy

Contact: info@tinkutara.com