All Questions Topic List
Relation and Functions Questions
Previous in All Question Next in All Question
Previous in Relation and Functions Next in Relation and Functions
Question Number 95216 by mathmax by abdo last updated on 24/May/20
calculste∑n=0∞n(2n+1)2(n+3)
Answered by abdomathmax last updated on 25/May/20
letSn=∑k=0nk(k+3)(2k+1)2letdecomposeF(x)=x(x+3)(2x+1)2F(x)=ax+3+b(2x+1)+c(2x+1)2a=−3(−5)2=−325c=−12(3−12)=−15limx→+∞xF(x)=0=a+b2⇒b2=325⇒b=625⇒Sn=−325∑k=0n1k+3+625∑k=0n12k+1−15∑k=0n1(2k+1)2wehave∑k=0n1k+3=∑k=3n+31k=Hn+3−32∑k=0n12k+1=H2n+1−12Hn⇒Sn=−325(Hn+3−32)+625(H2n+1−12Hn)−15∑k=0n1(2k+1)2=325(H2n+1−Hn+3)+325(H2n+1−Hn)−15∑k=0n1(2k+1)2+950⇒limSn=325ln(2)+325ln(2)−15∑k=0∞1(2k+1)2=625ln(2)+950−15∑k=0∞1(2k+1)2π26=∑k=1∞1k2=∑k=1∞14k2+∑k=0∞1(2k+1)2⇒∑k=0∞1(2k+1)2=π26−14×π26=34×π26=π28⇒S=625ln(2)+950−π240
Terms of Service
Privacy Policy
Contact: info@tinkutara.com