Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 95217 by mathmax by abdo last updated on 24/May/20

calculate Σ_(n=1) ^∞   (((−1)^n )/(n^2 (n+2)^3 ))

calculaten=1(1)nn2(n+2)3

Answered by mathmax by abdo last updated on 25/May/20

let decompose F(x) =(1/(x^2 (x+2)^3 )) ⇒F(x) =Σ_(i=1) ^2  (a_i /x^i ) +Σ_(i=1) ^3  (b_i /((x+2)^i ))  a_i ?  we find D_1 (0) for f(x) =(x+2)^(−3)  ⇒f^′ (x) =−3(x+2)^(−4)   f(x) =f(o) +xf^′ (0) +(x^2 /(2!))ξ(x) =2^(−3)   −3.2^(−4)  x +(x^2 /2)ξ(x) ⇒  ((f(x))/x^2 ) =(2^(−3) /x^2 )−((3.2^(−4) )/x) +(x/2)ξ(x) ⇒a_1 =−(3/2^4 ) and a_2 =(1/2^3 )  b_i  we find D_2 (−2) for g(x) =x^(−2)  ⇒g^′ (x)=−2x^(−3)  ⇒g^((2)) (x)=6x^(−4)   g(x)=g(−2) +((x+2)/!)g^′ (−2) +(((x+2)^2 )/(2!))g^((2)) (−2) +(((x+2)^3 )/(3!))ξ(x)  =(−2)^(−2)  +(x+2)(−2)(−2)^(−3)  +(((x+2)^2 )/2)(6)(−2)^(−4)  +(((x+2)^3 )/6)ξ(x)  ((g(x))/((x+2)^3 )) =(((−2)^(−2) )/((x+2)^3 )) +(((−2)^(−2) )/((x+2)^2 )) +((3(−2)^(−4) )/(x+2)) +(1/6)ξ(x) ⇒  b_1 =(3/(16)) ,b_2 =(1/4)  , b_3 =(1/4) ⇒  F(x) =−(3/(16x)) +(1/(8x^2 )) +(3/(16(x+2))) +(1/(4(x+2)^2 )) +(1/(4(x+2)^3 )) ⇒  Σ_(k=1) ^n  (((−1)^k )/(k^2 (k+1)^3 )) =−(3/(16))Σ_(k=1) ^n  (((−1)^k )/k) +(1/8)Σ_(k=1) ^n  (((−1)^k )/k^2 ) +(3/(16))Σ_(k=1) ^n (((−1)^k )/(k+2))  +(1/4)Σ_(k=1) ^n  (((−1)^k )/((k+2)^2 )) +(1/4)Σ_(k=1) ^n  (((−1)^k )/((k+2)^3 ))  Σ_(k=1) ^n  (((−1)^k )/k)→−ln(2)(n→+∞)  Σ_(k=1) ^n  (((−1)^k )/k^2 ) →δ(2) =(2^(1−2) −1)ξ(2) =−(1/2)×(π^2 /6) =−(π^2 /(12))  Σ_(k=1) ^n  (((−1)^k )/(k+2)) =Σ_(k=3) ^(n+2)  (((−1)^k )/k) →Σ_(k=3) ^∞  (((−1)^k )/k)  =−ln2− (−1+(1/2))=−ln2+(1/2)  Σ_(k=1) ^n  (((−1)^k )/((k+2)^2 )) =Σ_(k=3) ^(n+2)  (((−1)^k )/k^2 ) →Σ_(k=3) ^∞  (((−1)^k )/k^2 ) =−(π^2 /(12)) −(−1+(1/4))  =(3/4)−(π^2 /(12))  Σ_(k=1) ^n  (((−1)^k )/((k+2)^3 )) =Σ_(k=3) ^(n+2)  (((−1)^k )/k^3 ) →Σ_(k=3) ^∞  (((−1)^k )/k^3 ) −(−1+(1/8))  =(2^(1−3) −1)ξ(3) +(7/8) =((1/4)−1)ξ(3)+(7/8) =(7/8)−(3/4)ξ(3)  the value of this sum is known...

letdecomposeF(x)=1x2(x+2)3F(x)=i=12aixi+i=13bi(x+2)iai?wefindD1(0)forf(x)=(x+2)3f(x)=3(x+2)4f(x)=f(o)+xf(0)+x22!ξ(x)=233.24x+x22ξ(x)f(x)x2=23x23.24x+x2ξ(x)a1=324anda2=123biwefindD2(2)forg(x)=x2g(x)=2x3g(2)(x)=6x4g(x)=g(2)+x+2!g(2)+(x+2)22!g(2)(2)+(x+2)33!ξ(x)=(2)2+(x+2)(2)(2)3+(x+2)22(6)(2)4+(x+2)36ξ(x)g(x)(x+2)3=(2)2(x+2)3+(2)2(x+2)2+3(2)4x+2+16ξ(x)b1=316,b2=14,b3=14F(x)=316x+18x2+316(x+2)+14(x+2)2+14(x+2)3k=1n(1)kk2(k+1)3=316k=1n(1)kk+18k=1n(1)kk2+316k=1n(1)kk+2+14k=1n(1)k(k+2)2+14k=1n(1)k(k+2)3k=1n(1)kkln(2)(n+)k=1n(1)kk2δ(2)=(2121)ξ(2)=12×π26=π212k=1n(1)kk+2=k=3n+2(1)kkk=3(1)kk=ln2(1+12)=ln2+12k=1n(1)k(k+2)2=k=3n+2(1)kk2k=3(1)kk2=π212(1+14)=34π212k=1n(1)k(k+2)3=k=3n+2(1)kk3k=3(1)kk3(1+18)=(2131)ξ(3)+78=(141)ξ(3)+78=7834ξ(3)thevalueofthissumisknown...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com