Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 95259 by mhmd last updated on 24/May/20

find all roots ((√6) −(√2)i)^(1/3) by using demover theorem ?

$${find}\:{all}\:{roots}\:\left(\sqrt{\mathrm{6}}\:−\sqrt{\mathrm{2}}{i}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} {by}\:{using}\:{demover}\:{theorem}\:? \\ $$

Commented by mhmd last updated on 24/May/20

help me ?

$${help}\:{me}\:? \\ $$

Answered by mathmax by abdo last updated on 24/May/20

let find z  / z^2  =((√6)−i(√2))^(1/3)   we have   (√6)−i(√2)=2(√2){((√6)/(2(√2)))−((i(√2))/(2(√2)))} =2(√2)e^(iarctan(−((√2)/(√6))))  ⇒  ((√6)−i(√2))^(1/3)  =(2(√2))^(1/3)  e^(−(i/3)arctan(((√2)/(√6))))  let z =re^(iθ)     (e)⇒r^2  e^(2iθ )  =(2(√2))^(1/3)  e^(−(i/3)arctan(((√2)/(√6))))  ⇒r =(2(√2))^(1/6)  and  2θ =−(1/3)arctan(((√2)/(√6)))+2kπ ⇒θ_k =−(1/6) arctan(((√2)/(√6)))+kπ  so the roots are z_z =^(12) (√8) e^(i(−(1/6)arctan(((√2)/(√6)))+kπ))    k ∈{0,1}

$$\mathrm{let}\:\mathrm{find}\:\mathrm{z}\:\:/\:\mathrm{z}^{\mathrm{2}} \:=\left(\sqrt{\mathrm{6}}−\mathrm{i}\sqrt{\mathrm{2}}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} \:\:\mathrm{we}\:\mathrm{have}\: \\ $$$$\sqrt{\mathrm{6}}−\mathrm{i}\sqrt{\mathrm{2}}=\mathrm{2}\sqrt{\mathrm{2}}\left\{\frac{\sqrt{\mathrm{6}}}{\mathrm{2}\sqrt{\mathrm{2}}}−\frac{\mathrm{i}\sqrt{\mathrm{2}}}{\mathrm{2}\sqrt{\mathrm{2}}}\right\}\:=\mathrm{2}\sqrt{\mathrm{2}}\mathrm{e}^{\mathrm{iarctan}\left(−\frac{\sqrt{\mathrm{2}}}{\sqrt{\mathrm{6}}}\right)} \:\Rightarrow \\ $$$$\left(\sqrt{\mathrm{6}}−\mathrm{i}\sqrt{\mathrm{2}}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} \:=\left(\mathrm{2}\sqrt{\mathrm{2}}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} \:\mathrm{e}^{−\frac{\mathrm{i}}{\mathrm{3}}\mathrm{arctan}\left(\frac{\sqrt{\mathrm{2}}}{\sqrt{\mathrm{6}}}\right)} \:\mathrm{let}\:\mathrm{z}\:=\mathrm{re}^{\mathrm{i}\theta} \:\: \\ $$$$\left(\mathrm{e}\right)\Rightarrow\mathrm{r}^{\mathrm{2}} \:\mathrm{e}^{\mathrm{2i}\theta\:} \:=\left(\mathrm{2}\sqrt{\mathrm{2}}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} \:\mathrm{e}^{−\frac{\mathrm{i}}{\mathrm{3}}\mathrm{arctan}\left(\frac{\sqrt{\mathrm{2}}}{\sqrt{\mathrm{6}}}\right)} \:\Rightarrow\mathrm{r}\:=\left(\mathrm{2}\sqrt{\mathrm{2}}\right)^{\frac{\mathrm{1}}{\mathrm{6}}} \:\mathrm{and} \\ $$$$\mathrm{2}\theta\:=−\frac{\mathrm{1}}{\mathrm{3}}\mathrm{arctan}\left(\frac{\sqrt{\mathrm{2}}}{\sqrt{\mathrm{6}}}\right)+\mathrm{2k}\pi\:\Rightarrow\theta_{\mathrm{k}} =−\frac{\mathrm{1}}{\mathrm{6}}\:\mathrm{arctan}\left(\frac{\sqrt{\mathrm{2}}}{\sqrt{\mathrm{6}}}\right)+\mathrm{k}\pi \\ $$$$\mathrm{so}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{are}\:\mathrm{z}_{\mathrm{z}} =^{\mathrm{12}} \sqrt{\mathrm{8}}\:\mathrm{e}^{\mathrm{i}\left(−\frac{\mathrm{1}}{\mathrm{6}}\mathrm{arctan}\left(\frac{\sqrt{\mathrm{2}}}{\sqrt{\mathrm{6}}}\right)+\mathrm{k}\pi\right)} \: \\ $$$$\mathrm{k}\:\in\left\{\mathrm{0},\mathrm{1}\right\} \\ $$

Commented by mhmd last updated on 24/May/20

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Commented by turbo msup by abdo last updated on 24/May/20

you are welcome

$${you}\:{are}\:{welcome} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com