All Questions Topic List
Differentiation Questions
Previous in All Question Next in All Question
Previous in Differentiation Next in Differentiation
Question Number 95397 by ~blr237~ last updated on 25/May/20
f(x)=1lnx−1x−11)limx→1f(x)=122)∫01f(x)dx=γ
Commented by Mikael_786 last updated on 25/May/20
1.limx→1{1lnx−1x−1}limx→1{1x−1(x−1lnx−1)}=limx→1{1x−1(∫10xydy−1)}limx→1{∫10xyx−1dy−∫101x−1dy}limx→1{∫10xy−1x−1dy}=∫10{limx→1xy−1x−1}dy=∫10ydy=[y22]01=12
∫10{1lnx−1x−1}dxletlnx=−y⇒x=e−ydx=−e−ydy∫0∞{1−y−1e−y−1}(−e−ydy)∫∞0{e−y1−e−y−e−yy}dy=∫∞0e−y1−e−ydy−∫∞0e−yydy∫∞0e−y1−e−ydy−∫10e−yydy−∫∞1e−yydyletz=1−e−y⇒e−y=1−z−y=ln(1−z)⇒dy=dz1−z∫101−zz∗dz1−z−∫10e−yydy−∫∞1e−yydy∫10dzz−∫10e−yydy−∫∞1e−yydy∫101−e−yydy−∫∞1e−yydy=γγ:EulerConstant
Terms of Service
Privacy Policy
Contact: info@tinkutara.com