Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 95465 by mathmax by abdo last updated on 25/May/20

solve y^(′′)  −y^′  +2   =x^2  e^(−x)  with y(0) =1 and y^′ (0) =−1

solveyy+2=x2exwithy(0)=1andy(0)=1

Answered by mathmax by abdo last updated on 26/May/20

(he)→y^(′′) −y^′  +2 =0→r^2 −r+2 =0  Δ =−7 ⇒r_1 =((1+i(√7))/2) and r_2 =((1−i(√7))/2) ⇒  y(x) =a e^(((1+i(√7))/2)x)  +b e^((1−i(√7))/2)  =e^(x/2) (α cos((((√7)x)/2))+βsin((((√7)x)/2)))  =α e^(x/2)  cos(((√7)/2)x) +β e^(x/2)  sin(((√7)/2)x) =αu_1 (x)+βu_2 (x)  W(u_1 ,u_2 ) = determinant (((u_1          u_2 )),((u_1 ^′         u_2 ^′ ))) = determinant (((e^(x/2)  cos((((√7)x)/2))                                          e^(x/2)  sin((((√7)x)/2)))),(((1/2)e^(x/2)  cos((((√7)x)/2))−((√7)/2)e^(x/2) sin((((√7)x)/2))             (1/2)e^(x/2)  sin((((√7)x)/2))+((√7)/2)e^(x/2)  cos((((√7)x)/2)))))  =e^(x/2)  cos((((√7)x)/2)){(1/2)e^(x/2)  sin((((√7)x)/2))+((√7)/2)e^(x/2)  cos((((√7)x)/2))−e^(x/2)  sin((((√7)x)/2)){(1/2)e^(x/2)  cos((((√7)x)/2))−((√7)/2)e^(x/2)  sin((((√7)x)/2))}

(he)yy+2=0r2r+2=0Δ=7r1=1+i72andr2=1i72y(x)=ae1+i72x+be1i72=ex2(αcos(7x2)+βsin(7x2))=αex2cos(72x)+βex2sin(72x)=αu1(x)+βu2(x)W(u1,u2)=|u1u2u1u2|=|ex2cos(7x2)ex2sin(7x2)12ex2cos(7x2)72ex2sin(7x2)12ex2sin(7x2)+72ex2cos(7x2)|=ex2cos(7x2){12ex2sin(7x2)+72ex2cos(7x2)ex2sin(7x2){12ex2cos(7x2)72ex2sin(7x2)}

Commented by mathmax by abdo last updated on 26/May/20

W(u_1 ,u_2 ) =(1/2)e^x  cos((((√7)x)/2))sin((((√7)x)/2))+((√7)/2) e^x  cos^2 ((((√7)x)/2))  −(1/2)e^x  sin((((√7)x)/2))cos((((√7)x)/2))+((√7)/2)e^x  sin^2 ((((√7)x)/2))  =((√7)/2)e^x

W(u1,u2)=12excos(7x2)sin(7x2)+72excos2(7x2)12exsin(7x2)cos(7x2)+72exsin2(7x2)=72ex

Commented by mathmax by abdo last updated on 26/May/20

W_1 = determinant (((0          u_2 )),((x^2  e^(−x)   u_2 ^′ ))) =−x^2 e^(−x)  e^(x/2)  sin((((√7)x)/2)) =−x^2  e^(−(x/2))  sin((((√7)x)/2))  W_2 = determinant (((u_(1         )          0)),((u_1 ^′           x^2  e^(−x) )))=x^2 e^(−x) e^(x/2)  cos((((√7)x)/2))=x^2  e^(−(x/2))  cos((((√7)x)/2))  v_1 =∫ (w_1 /w)dx =−∫  ((x^2  e^(−(x/2))  sin((((√7)x)/2)))/(((√7)/2)e^x ))dx =−(2/(√7))∫ x^2  e^(−(3/2)x)  sin((((√7)x)/2))dx  v_2 =∫ (w_2 /w)dx =∫  ((x^2 e^(−(x/2)) cos((((√7)x)/2)))/(((√7)/2)e^x ))dx=(2/(√7))∫ x^2  e^(−(3/2)x)  cos((((√7)x)/2))dx  y_p =u_1 v_1  +u_2 v_2  and y =y_h  +y_p  ....

W1=|0u2x2exu2|=x2exex2sin(7x2)=x2ex2sin(7x2)W2=|u10u1x2ex|=x2exex2cos(7x2)=x2ex2cos(7x2)v1=w1wdx=x2ex2sin(7x2)72exdx=27x2e32xsin(7x2)dxv2=w2wdx=x2ex2cos(7x2)72exdx=27x2e32xcos(7x2)dxyp=u1v1+u2v2andy=yh+yp....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com