Question and Answers Forum

All Questions      Topic List

Permutation and Combination Questions

Previous in All Question      Next in All Question      

Previous in Permutation and Combination      Next in Permutation and Combination      

Question Number 95578 by i jagooll last updated on 26/May/20

Commented by i jagooll last updated on 26/May/20

anyone can help?

Commented by john santu last updated on 26/May/20

60

$$\mathrm{60} \\ $$

Commented by john santu last updated on 26/May/20

We can write the six digit number as a1a2a3a4a5a6 . Since 10≡−1(mod11) and 100≡1(mod11) , the overall condition that the number be divisible by 11 may be expressed as a1+a3+a5≡a2+a4+a6(mod11) . Since we are given that a1+a2+a3+a4+a5+a6=0+1+2+5+7+9=24≡2(mod11) , it follows that a1+a3+a5≡a2+a4+a6≡1(mod11) . The only feasible solutions will therefore have a1+a3+a5=a2+a4+a6=12 . A little bit of trial and error will show that the two sets {a1,a3,a5} and {a2,a4,a6} must be {0,5,7} and {1,2,9} , not necessarily respectively. The assignment of the sets can be done in 2 ways and then the digits can be permuted in 3!∗3!=36 ways giving a total of 72 numbers satisfying the required properties. Of those, 12 will have a leading digit of zero meaning they aren’t really six digit numbers. This gives 60 six digit numbers satisfying the required properties.

Commented by mr W last updated on 26/May/20

2×3!×3!−2!×3!=60

$$\mathrm{2}×\mathrm{3}!×\mathrm{3}!−\mathrm{2}!×\mathrm{3}!=\mathrm{60} \\ $$

Commented by john santu last updated on 26/May/20

explain

$$\mathrm{explain} \\ $$

Commented by mr W last updated on 26/May/20

we divide the 6 digits into two groups:  group A with 0,5,7  group B with 1,2,9  both groups have the same sum,  namly 12.  numbers in form of ABABAB or  BABABA are divisible by 11, since  ΣA−ΣB=0 which is divisible by 11.    number of numbers in form BABABA  is 3!×3!.    number of numbers in form ABABAB  is 3!×3!, but some of them begin with  “0” which are invalid. number of  invalid numbers is 2!×3!.    therefore the number of valid  numbers is: 2×3!×3!−2!×3!=60.    we have no other possibilty to divide  the 6 given digits into two groups   with the same sum or with sums  with the difference 11, 22 etc.

$${we}\:{divide}\:{the}\:\mathrm{6}\:{digits}\:{into}\:{two}\:{groups}: \\ $$$${group}\:{A}\:{with}\:\mathrm{0},\mathrm{5},\mathrm{7} \\ $$$${group}\:{B}\:{with}\:\mathrm{1},\mathrm{2},\mathrm{9} \\ $$$${both}\:{groups}\:{have}\:{the}\:{same}\:{sum}, \\ $$$${namly}\:\mathrm{12}. \\ $$$${numbers}\:{in}\:{form}\:{of}\:{ABABAB}\:{or} \\ $$$${BABABA}\:{are}\:{divisible}\:{by}\:\mathrm{11},\:{since} \\ $$$$\Sigma{A}−\Sigma{B}=\mathrm{0}\:{which}\:{is}\:{divisible}\:{by}\:\mathrm{11}. \\ $$$$ \\ $$$${number}\:{of}\:{numbers}\:{in}\:{form}\:{BABABA} \\ $$$${is}\:\mathrm{3}!×\mathrm{3}!. \\ $$$$ \\ $$$${number}\:{of}\:{numbers}\:{in}\:{form}\:{ABABAB} \\ $$$${is}\:\mathrm{3}!×\mathrm{3}!,\:{but}\:{some}\:{of}\:{them}\:{begin}\:{with} \\ $$$$``\mathrm{0}''\:{which}\:{are}\:{invalid}.\:{number}\:{of} \\ $$$${invalid}\:{numbers}\:{is}\:\mathrm{2}!×\mathrm{3}!. \\ $$$$ \\ $$$${therefore}\:{the}\:{number}\:{of}\:{valid} \\ $$$${numbers}\:{is}:\:\mathrm{2}×\mathrm{3}!×\mathrm{3}!−\mathrm{2}!×\mathrm{3}!=\mathrm{60}. \\ $$$$ \\ $$$${we}\:{have}\:{no}\:{other}\:{possibilty}\:{to}\:{divide} \\ $$$${the}\:\mathrm{6}\:{given}\:{digits}\:{into}\:{two}\:{groups}\: \\ $$$${with}\:{the}\:{same}\:{sum}\:{or}\:{with}\:{sums} \\ $$$${with}\:{the}\:{difference}\:\mathrm{11},\:\mathrm{22}\:{etc}. \\ $$

Commented by mr W last updated on 26/May/20

a number ABABAB...BA is divisible  by 11, if ΣA−ΣB is also divisible by  11 (including 0).

$${a}\:{number}\:{ABABAB}...{BA}\:{is}\:{divisible} \\ $$$${by}\:\mathrm{11},\:{if}\:\Sigma{A}−\Sigma{B}\:{is}\:{also}\:{divisible}\:{by} \\ $$$$\mathrm{11}\:\left({including}\:\mathrm{0}\right). \\ $$

Commented by i jagooll last updated on 26/May/20

thank you both

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{both} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com