Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 95584 by turbo msup by abdo last updated on 26/May/20

calculate ∫_1 ^(+∞)  (dx/(x^3 (2x+1)^4 ))  1)without use of decomposition  2)by use of decomposition

calculate1+dxx3(2x+1)41)withoutuseofdecomposition2)byuseofdecomposition

Answered by MJS last updated on 26/May/20

Ostrogradski leads to  ((960x^4 +1200x^3 +440x^2 +30x−3)/(6x^2 (2x+1)^3 ))+40∫(dx/(x(2x+1)))=  =((960x^4 +1200x^3 +440x^2 +30x−3)/(6x^2 (2x+1)^3 ))+40ln (x/(2x+1)) +C  ⇒  ∫_1 ^(+∞)  (dx/(x^3 (2x+1)^4 ))=40ln (3/2) −((2627)/(162))

Ostrogradskileadsto960x4+1200x3+440x2+30x36x2(2x+1)3+40dxx(2x+1)==960x4+1200x3+440x2+30x36x2(2x+1)3+40lnx2x+1+C+1dxx3(2x+1)4=40ln322627162

Commented by mathmax by abdo last updated on 26/May/20

thank you sir mjs

thankyousirmjs

Answered by mathmax by abdo last updated on 26/May/20

A =∫_1 ^(+∞)  (dx/(x^3 (2x+1)^4 ))⇒A =∫_1 ^(+∞)  (dx/(((x/(2x+1)))^3 (2x+1)^7 ))  we do the changement (x/(2x+1)) =t ⇒  x =2tx +t ⇒(1−2t)x =t ⇒x =(t/(1−2t)) ⇒(dx/dt) =((1−2t −t(−2t))/((1−2t)^2 ))  =(1/((1−2t)^2 ))   and 2x+1 =((2t)/(1−2t)) +1 =(1/(1−2t)) ⇒  A = ∫_(1/3) ^(1/2)    (dt/((2t−1)^2  t^3 ((1/(1−2t)))^7 )) =−∫_(1/3) ^(1/2)  (((2t−1)^7 )/((2t−1)^2  t^3 ))dt  =−∫_(1/3) ^(1/2)   (((2t−1)^5 )/t^3 ) dt  =−∫_(1/3) ^(1/2)  ((Σ_(k=0) ^5  C_5 ^k (2t)^k (−1)^(5−k) )/t^3 )dt  =∫_(1/3) ^(1/2)  ((Σ_(k=0) ^5  2^k (−1)^k  C_5 ^k   t^k )/t^3 )dt  =Σ_(k=0) ^5  C_5 ^k (−2)^k   ∫_(1/3) ^(1/2)  t^(k−3)  dt  =Σ_(k=0 and k≠2) ^5  (−2)^k  C_5 ^k  [(1/(k−2))t^(k−2) ]_(1/3) ^(1/2)   +4 C_5 ^2  [lnt]_(1/3) ^(1/2)   =Σ_(k=0 and k≠2) ^5  (−2)^k  (C_5 ^k /(k−2)){ ((1/2))^(k−2) −((1/3))^(k−2) }+4C_5 ^2 {ln((1/2))−ln((1/3))}

A=1+dxx3(2x+1)4A=1+dx(x2x+1)3(2x+1)7wedothechangementx2x+1=tx=2tx+t(12t)x=tx=t12tdxdt=12tt(2t)(12t)2=1(12t)2and2x+1=2t12t+1=112tA=1312dt(2t1)2t3(112t)7=1312(2t1)7(2t1)2t3dt=1312(2t1)5t3dt=1312k=05C5k(2t)k(1)5kt3dt=1312k=052k(1)kC5ktkt3dt=k=05C5k(2)k1312tk3dt=k=0andk25(2)kC5k[1k2tk2]1312+4C52[lnt]1312=k=0andk25(2)kC5kk2{(12)k2(13)k2}+4C52{ln(12)ln(13)}

Answered by mathmax by abdo last updated on 27/May/20

thank you sir mjs  2) let decompose F(x) =(1/(x^3 (2x+1)^4 )) ⇒  2^4 F(x) =(1/(x^3 (x+(1/2))^4 )) =Σ_(i=1) ^3  (a_i /x^i ) +Σ_(i=1) ^4  (b_i /((x+(1/2))^i ))  a_i ?  we find D_2 (0)for f(x) =(x+(1/2))^(−4)   f(x)=f(0) +(x/(1!))f^′ (0) +(x^2 /(2!))f^((2)) (0) +(x^3 /(3!))ξ(x)  f(0) =(1/2^(−4) )  ,f^′ (x) =−4(x+(1/2))^(−5)  ⇒f^′ (0) =((−4)/2^(−5) )  f^((2)) (x) =20(x+(1/2))^(−6)  ⇒f^((2)) (0) =((20)/2^(−6) ) ⇒  f(x) =2^4  −4 .2^5  x +10 .2^6  x^2  +(x^3 /(3!))ξ(x) ⇒  ((f(x))/x^3 ) =(2^4 /x^3 ) −((4.2^5 )/x^2 ) +((10.2^6 )/x) +(1/(3!))ξ(x) ⇒a_1 =10.2^6   a_2 =−4.2^5   and a_3 =2^4  let find b_i   we determine D_3 (−(1/2)) for g(x) =x^(−3)   g(x) =g(−(1/2))+((x+(1/2))/(1!))g^′ (−(1/2)) +(((x+(1/2))^2 )/(2!))g^((2)) (−(1/2))  +(((x+(1/2))^3 )/(3!))g^((3)) (−(1/2))+(((x+(1/2))^4 )/(4!))ξ(x)  g(−(1/2))=(−(1/2))^(−3)  ,g^′ (x)=−3x^(−4)  ⇒g^′ (−(1/2))=−3(−(1/2))^(−4)   g^((2)) (x) =12 x^(−5)  ⇒g^((2)) (−(1/2)) =12(−(1/2))^(−5)   g^((3)) (x) =−60 x^(−6)  ⇒g^((3)) (−(1/2))=−60(−(1/2))^(−6)   ⇒g(x)=(−(1/2))^(−3) −3(−(1/2))^(−4) (x+(1/2))+6(−(1/2))^(−5) (x+(1/2))^2   −10 (−(1/2))^(−6) (x+(1/2))^3  +(((x+(1/2))^4 )/(4!))ξ(x)  =−2^3  −3 .2^4 (x+(1/2))−6 .2^5 (x+(1/2))^2  −10.2^6 (x+(1/2))^3   +(((x+(1/2))^4 )/(4!))ξ(x) ⇒  ((g(x))/((x+(1/2))^4 )) =−(2^3 /((x+(1/2))^4 ))−((3.2^4 )/((x+(1/2))^3 ))−((6.2^5 )/((x+(1/2))^2 ))−((10.2^6 )/((x+(1/2)))) +..⇒  ⇒b_1 =−10.2^6  ,b_2 =−6.2^5  , b_3 =−3.2^4  , b_4 =−2^3  ⇒  2^4  F(x) =((10.2^6 )/x) −((4.2^5 )/x^2 ) +(2^4 /x^3 ) −((10.2^6 )/((x+(1/2)))) −((6.2^5 )/((x+(1/2))^2 ))−((3.2^4 )/((x+(1/2))^3 ))  −(2^3 /((x+(1/2))^4 )) ⇒  F(x) =((10.2^2 )/x)−((4.2)/x^2 ) +(1/x^3 ) −((10.2^2 )/((x+(1/2))))−((6.2)/((x+(1/2))^2 ))−(3/((x+(1/2))^3 ))  −(2^(−1) /((x+(1/2))^4 ))  now its eazy to find ∫_1 ^(+∞)  F(x)dx...

thankyousirmjs2)letdecomposeF(x)=1x3(2x+1)424F(x)=1x3(x+12)4=i=13aixi+i=14bi(x+12)iai?wefindD2(0)forf(x)=(x+12)4f(x)=f(0)+x1!f(0)+x22!f(2)(0)+x33!ξ(x)f(0)=124,f(x)=4(x+12)5f(0)=425f(2)(x)=20(x+12)6f(2)(0)=2026f(x)=244.25x+10.26x2+x33!ξ(x)f(x)x3=24x34.25x2+10.26x+13!ξ(x)a1=10.26a2=4.25anda3=24letfindbiwedetermineD3(12)forg(x)=x3g(x)=g(12)+x+121!g(12)+(x+12)22!g(2)(12)+(x+12)33!g(3)(12)+(x+12)44!ξ(x)g(12)=(12)3,g(x)=3x4g(12)=3(12)4g(2)(x)=12x5g(2)(12)=12(12)5g(3)(x)=60x6g(3)(12)=60(12)6g(x)=(12)33(12)4(x+12)+6(12)5(x+12)210(12)6(x+12)3+(x+12)44!ξ(x)=233.24(x+12)6.25(x+12)210.26(x+12)3+(x+12)44!ξ(x)g(x)(x+12)4=23(x+12)43.24(x+12)36.25(x+12)210.26(x+12)+..b1=10.26,b2=6.25,b3=3.24,b4=2324F(x)=10.26x4.25x2+24x310.26(x+12)6.25(x+12)23.24(x+12)323(x+12)4F(x)=10.22x4.2x2+1x310.22(x+12)6.2(x+12)23(x+12)321(x+12)4nowitseazytofind1+F(x)dx...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com