Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 95585 by turbo msup by abdo last updated on 26/May/20

calculate ∫_2 ^(+∞)    (dx/((x−1)^4 (x^2 +x+1)^2 ))

calculate2+dx(x1)4(x2+x+1)2

Answered by MJS last updated on 26/May/20

∫(dx/((x−1)^4 (x^2 +x+1)^2 ))=       [Ostrogradski]  =−((8x^4 −11x^3 −2x^2 −x+9)/(27(x−1)^4 (x^2 +x+1)))−(2/(27))∫((4x+5)/((x−1)(x^2 +x+1)))dx    −(2/(27))∫((4x+5)/((x−1)(x^2 +x+1)))dx=  =(2/(27))∫((3x+2)/(x^2 +x+1))dx−(2/9)∫(dx/(x−1))=  =((2(√3))/(81))arctan (((√3)(2x+1))/3) +(1/9)ln (x^2 +x+1) −(2/9)ln (x−1) =  =((2(√3))/(81))arctan (((√3)(2x+1))/3) +(1/9)ln ((x^2 +x+1)/((x−1)^2 )) +C    ⇒  ∫_2 ^(+∞) (dx/((x−1)^4 (x^2 +x+1)^2 ))=  =((13)/(63))+((π(√3))/(81))−((ln 7)/9)−((2(√3))/(81))arctan ((5(√3))/3)

dx(x1)4(x2+x+1)2=[Ostrogradski]=8x411x32x2x+927(x1)4(x2+x+1)2274x+5(x1)(x2+x+1)dx2274x+5(x1)(x2+x+1)dx==2273x+2x2+x+1dx29dxx1==2381arctan3(2x+1)3+19ln(x2+x+1)29ln(x1)==2381arctan3(2x+1)3+19lnx2+x+1(x1)2+C+2dx(x1)4(x2+x+1)2==1363+π381ln792381arctan533

Commented by mathmax by abdo last updated on 27/May/20

thank you sir mjs

thankyousirmjs

Terms of Service

Privacy Policy

Contact: info@tinkutara.com