All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 95586 by turbo msup by abdo last updated on 26/May/20
find∫dxxn(x+1)mmandnintegr
Commented by Tony Lin last updated on 26/May/20
letu=xx+1,dx=(x+1)2dux=u1−u∫1(u1−u)n(11−u)m−2du=∫(1−xx+1)n+m−2(xx+1)nd(xx+1)=Cn−1n+m−2(−1)n−1ln∣xx+1∣+∑n−2k=0Ckn+m−2(−1)k+11(n+k−1)(xx+1)u+k−1+∑m−2k=0Cn+kn+m−2(−1)n+k(xx+1)k+1k+1+c
Answered by mathmax by abdo last updated on 26/May/20
I=∫dxxn(x+1)m⇒I=∫dx(xx+1)n(x+1)m+nwedothechangementxx+1=t⇒x=tx+t⇒(1−t)x=t⇒x=t1−t⇒dxdt=1−t−t(−1)(1−t)2=1(1−t)2andx+1=t1−t+1=11−tI=∫dt(1−t)2tn(11−t)m+n=∫(1−t)m+n(1−t)2tndt=∫(1−t)m+n−2tndt=(−1)m+n−2∫(t−1)m+n−2tndt=(−1)m+n−2∫∑k=0m+n−2Cm+n−2ktktndt=(−1)m+n−2∑k=0m+n−2Cm+n−2k∫tk−ndt=(−1)m+n−2∑k=0andk≠n−1m+n−2Cm+n−2k1k−n+1tk−n+1+(−1)m+n−2Cm+n−2n−1ln∣t∣+C⇒I=(−1)m+n−2∑k=0andk≠n−1m+n−2Cm+n−2k1k−n+1(xx+1)k−n+1+(−1)m+n−2Cm+n−2n−1ln∣xx+1∣+C
Terms of Service
Privacy Policy
Contact: info@tinkutara.com