Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 95677 by Rio Michael last updated on 26/May/20

 Given f(x) = ((ln x)/(x−1))  (a) find the domain of f.  (b) find the limts of f at the boundary of its domain  hence state the asymptote of y = f(x).

$$\:\mathrm{Given}\:{f}\left({x}\right)\:=\:\frac{\mathrm{ln}\:{x}}{{x}−\mathrm{1}} \\ $$$$\left(\mathrm{a}\right)\:\mathrm{find}\:\mathrm{the}\:\mathrm{domain}\:\mathrm{of}\:{f}. \\ $$$$\left(\mathrm{b}\right)\:\mathrm{find}\:\mathrm{the}\:\mathrm{limts}\:\mathrm{of}\:{f}\:\mathrm{at}\:\mathrm{the}\:\mathrm{boundary}\:\mathrm{of}\:\mathrm{its}\:\mathrm{domain} \\ $$$$\mathrm{hence}\:\mathrm{state}\:\mathrm{the}\:\mathrm{asymptote}\:\mathrm{of}\:{y}\:=\:{f}\left({x}\right). \\ $$

Answered by mathmax by abdo last updated on 27/May/20

1)D_f =]0,1[∪]1,+∞[  2)lim_(x→o^+ )   f(x) =+∞   and lim_(x→1^+ ) f(x)=lim_(x→1) f(x) =1  lim_(x→+∞) f(x) =lim_(x→+∞)   ((lnx)/(x(1−x^(−1) ))) =lim_(x→+∞)   ((lnx)/x)=0 ⇒  y=0 is assymtote for C_f

$$\left.\mathrm{1}\left.\right)\mathrm{D}_{\mathrm{f}} =\right]\mathrm{0},\mathrm{1}\left[\cup\right]\mathrm{1},+\infty\left[\right. \\ $$$$\left.\mathrm{2}\right)\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{o}^{+} } \:\:\mathrm{f}\left(\mathrm{x}\right)\:=+\infty\:\:\:\mathrm{and}\:\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{1}^{+} } \mathrm{f}\left(\mathrm{x}\right)=\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{1}} \mathrm{f}\left(\mathrm{x}\right)\:=\mathrm{1} \\ $$$$\mathrm{lim}_{\mathrm{x}\rightarrow+\infty} \mathrm{f}\left(\mathrm{x}\right)\:=\mathrm{lim}_{\mathrm{x}\rightarrow+\infty} \:\:\frac{\mathrm{lnx}}{\mathrm{x}\left(\mathrm{1}−\mathrm{x}^{−\mathrm{1}} \right)}\:=\mathrm{lim}_{\mathrm{x}\rightarrow+\infty} \:\:\frac{\mathrm{lnx}}{\mathrm{x}}=\mathrm{0}\:\Rightarrow \\ $$$$\mathrm{y}=\mathrm{0}\:\mathrm{is}\:\mathrm{assymtote}\:\mathrm{for}\:\mathrm{C}_{\mathrm{f}} \\ $$

Commented by Rio Michael last updated on 27/May/20

thank you so much sir.

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much}\:\mathrm{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com