Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 95679 by Rio Michael last updated on 26/May/20

The equation of motion for a particle moving in a straight line  along the OX axes is given by (d^2 x/dt^2 ) + (√7) (dt/dx) + 4x = 0.  show that the motion is an oscilatory motion hence find  its period.

$$\mathrm{The}\:\mathrm{equation}\:\mathrm{of}\:\mathrm{motion}\:\mathrm{for}\:\mathrm{a}\:\mathrm{particle}\:\mathrm{moving}\:\mathrm{in}\:\mathrm{a}\:\mathrm{straight}\:\mathrm{line} \\ $$$$\mathrm{along}\:\mathrm{the}\:\mathrm{O}{X}\:\mathrm{axes}\:\mathrm{is}\:\mathrm{given}\:\mathrm{by}\:\frac{{d}^{\mathrm{2}} {x}}{{dt}^{\mathrm{2}} }\:+\:\sqrt{\mathrm{7}}\:\frac{{dt}}{{dx}}\:+\:\mathrm{4}{x}\:=\:\mathrm{0}. \\ $$$$\mathrm{show}\:\mathrm{that}\:\mathrm{the}\:\mathrm{motion}\:\mathrm{is}\:\mathrm{an}\:\mathrm{oscilatory}\:\mathrm{motion}\:\mathrm{hence}\:\mathrm{find} \\ $$$$\mathrm{its}\:\mathrm{period}. \\ $$

Commented by Tony Lin last updated on 27/May/20

λ^2 +(√7)λ+4=0  λ=((−(√7)±3i)/2)  x=e^(−((√7)/2)t) (c_1 cos(3/2)t+c_2 sin(3/2)t)  =e^(−((√7)/2)t) (√(c_1 ^2 +c_2 ^2 ))((c_1 /(√(c_1 ^2 +c_2 ^2 )))cos(3/2)t+(c_2 /(√(c_1 ^2 +c_2 ^2 )))sin(3/2)t)  let (c_1 /(√(c_1 ^2 +c_2 ^2 )))=sinθ  θ=sin^(−1) (c_1 /(√(c_1 ^2 +c_2 ^2 )))  ⇒x=e^(−((√7)/2)t) (√(c_1 ^2 +c_2 ^2 ))[sin((3/2)t+θ)]  (dx/dt)=−((√7)/2)e^(−((√7)/2)t ) (√(c_1 ^2 +c_2 ^2 ))(3/2)[cos((3/2)t+θ)]  (d^2 x/dt^2 )=−(7/4)e^(−((√7)/2)t) (√(c_1 ^2 +c_2 ^2 ))(9/4)[sin((3/2)t+θ)]  =−((63)/(16))x  F=−((63m)/(16))x  →oscillatory motion  period T=((2π)/ω)=((2π)/(3/2))=(4/3)π  but when t→∞, e^(−((√7)/2)t) →0  so the amplitude would decrease gradually

$$\lambda^{\mathrm{2}} +\sqrt{\mathrm{7}}\lambda+\mathrm{4}=\mathrm{0} \\ $$$$\lambda=\frac{−\sqrt{\mathrm{7}}\pm\mathrm{3}{i}}{\mathrm{2}} \\ $$$${x}={e}^{−\frac{\sqrt{\mathrm{7}}}{\mathrm{2}}{t}} \left({c}_{\mathrm{1}} {cos}\frac{\mathrm{3}}{\mathrm{2}}{t}+{c}_{\mathrm{2}} {sin}\frac{\mathrm{3}}{\mathrm{2}}{t}\right) \\ $$$$={e}^{−\frac{\sqrt{\mathrm{7}}}{\mathrm{2}}{t}} \sqrt{{c}_{\mathrm{1}} ^{\mathrm{2}} +{c}_{\mathrm{2}} ^{\mathrm{2}} }\left(\frac{{c}_{\mathrm{1}} }{\sqrt{{c}_{\mathrm{1}} ^{\mathrm{2}} +{c}_{\mathrm{2}} ^{\mathrm{2}} }}{cos}\frac{\mathrm{3}}{\mathrm{2}}{t}+\frac{{c}_{\mathrm{2}} }{\sqrt{{c}_{\mathrm{1}} ^{\mathrm{2}} +{c}_{\mathrm{2}} ^{\mathrm{2}} }}{sin}\frac{\mathrm{3}}{\mathrm{2}}{t}\right) \\ $$$${let}\:\frac{{c}_{\mathrm{1}} }{\sqrt{{c}_{\mathrm{1}} ^{\mathrm{2}} +{c}_{\mathrm{2}} ^{\mathrm{2}} }}={sin}\theta \\ $$$$\theta={sin}^{−\mathrm{1}} \frac{{c}_{\mathrm{1}} }{\sqrt{{c}_{\mathrm{1}} ^{\mathrm{2}} +{c}_{\mathrm{2}} ^{\mathrm{2}} }} \\ $$$$\Rightarrow{x}={e}^{−\frac{\sqrt{\mathrm{7}}}{\mathrm{2}}{t}} \sqrt{{c}_{\mathrm{1}} ^{\mathrm{2}} +{c}_{\mathrm{2}} ^{\mathrm{2}} }\left[{sin}\left(\frac{\mathrm{3}}{\mathrm{2}}{t}+\theta\right)\right] \\ $$$$\frac{{dx}}{{dt}}=−\frac{\sqrt{\mathrm{7}}}{\mathrm{2}}{e}^{−\frac{\sqrt{\mathrm{7}}}{\mathrm{2}}{t}\:} \sqrt{{c}_{\mathrm{1}} ^{\mathrm{2}} +{c}_{\mathrm{2}} ^{\mathrm{2}} }\frac{\mathrm{3}}{\mathrm{2}}\left[{cos}\left(\frac{\mathrm{3}}{\mathrm{2}}{t}+\theta\right)\right] \\ $$$$\frac{{d}^{\mathrm{2}} {x}}{{dt}^{\mathrm{2}} }=−\frac{\mathrm{7}}{\mathrm{4}}{e}^{−\frac{\sqrt{\mathrm{7}}}{\mathrm{2}}{t}} \sqrt{{c}_{\mathrm{1}} ^{\mathrm{2}} +{c}_{\mathrm{2}} ^{\mathrm{2}} }\frac{\mathrm{9}}{\mathrm{4}}\left[{sin}\left(\frac{\mathrm{3}}{\mathrm{2}}{t}+\theta\right)\right] \\ $$$$=−\frac{\mathrm{63}}{\mathrm{16}}{x} \\ $$$${F}=−\frac{\mathrm{63}{m}}{\mathrm{16}}{x} \\ $$$$\rightarrow{oscillatory}\:{motion} \\ $$$${period}\:{T}=\frac{\mathrm{2}\pi}{\omega}=\frac{\mathrm{2}\pi}{\frac{\mathrm{3}}{\mathrm{2}}}=\frac{\mathrm{4}}{\mathrm{3}}\pi \\ $$$${but}\:{when}\:{t}\rightarrow\infty,\:{e}^{−\frac{\sqrt{\mathrm{7}}}{\mathrm{2}}{t}} \rightarrow\mathrm{0} \\ $$$${so}\:{the}\:{amplitude}\:{would}\:{decrease}\:{gradually} \\ $$

Commented by Rio Michael last updated on 27/May/20

thank you sir

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com