Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 95695 by mathmax by abdo last updated on 27/May/20

solve (x+1)y^′ −x^3 y = arctan(2x)

solve(x+1)yx3y=arctan(2x)

Answered by mathmax by abdo last updated on 27/May/20

(he) ⇒(x+1)y^′ −x^3 y =0 ⇒(y^′ /y) =(x^3 /(x+1)) ⇒ln∣y∣ =∫(x^3 /(x+1)) dx +c  =∫ ((x^3 +1−1)/(x+1))dx+c =∫ ((x^3 +1)/(x+1))dx −∫ (dx/(x+1))+c =∫(x^2 −x+1)dx−ln∣x+1∣ +c  =(x^3 /3)−(x^2 /2) +x−ln∣x+1 ∣ +c ⇒y =(k/(∣x+1∣)) e^((x^3 /3)−(x^2 /2)+x)     let find the solution on  ]−1,+∞[ ⇒y =(k/(x+1))e^((x^3 /3)−(x^2 /2)+x)      mvc method →  y^′  =(k^′ /(x+1))e^((x^3 /3)−(x^2 /2)+x)  +k(−(1/((x+1)^2 ))e^((x^3 /3)−(x^2 /2)+x)  +(1/(x+1))×(x^2 −x+1)e^((x^3 /3)−(x^2 /2)+x) )  (e)⇒k^′ e^((x^3 /3)−(x^2 /2)+x) −(k/((x+1)))e^((x^3 /3)−(x^2 /2)+x)  +k(x^2 −x+1) e^((x^3 /3)−(x^2 /2)+x)  −((kx^3 )/(x+1)) e^((x^3 /3)−(x^2 /2)+x)  =arctan(2x)  ⇒k^′  =arctan(2x) e^(−(x^3 /3)−(x^2 /2)+x)  ⇒k(x) =∫_. ^x  arctan(2u)e^(−(u^3 /3)−(u^2 /2)+u) du +c ⇒  y(x) =(1/(x+1))e^((x^3 /3)−(x^2 /2)+x) ( ∫_. ^x  arctan(2u)e^(−(u^3 /3)−(u^2 /2)+u)  du +c)  =(c/(x+1)) e^((x^3 /3)−(x^2 /2)+x)  +(1/(x+1))e^((x^3 /3)−(x^2 /2)+x)  ∫_. ^x  arctan(2u)e^(−(u^3 /3)−(u^2 /2)+u)  du

(he)(x+1)yx3y=0yy=x3x+1lny=x3x+1dx+c=x3+11x+1dx+c=x3+1x+1dxdxx+1+c=(x2x+1)dxlnx+1+c=x33x22+xlnx+1+cy=kx+1ex33x22+xletfindthesolutionon]1,+[y=kx+1ex33x22+xmvcmethody=kx+1ex33x22+x+k(1(x+1)2ex33x22+x+1x+1×(x2x+1)ex33x22+x)(e)kex33x22+xk(x+1)ex33x22+x+k(x2x+1)ex33x22+xkx3x+1ex33x22+x=arctan(2x)k=arctan(2x)ex33x22+xk(x)=.xarctan(2u)eu33u22+udu+cy(x)=1x+1ex33x22+x(.xarctan(2u)eu33u22+udu+c)=cx+1ex33x22+x+1x+1ex33x22+x.xarctan(2u)eu33u22+udu

Terms of Service

Privacy Policy

Contact: info@tinkutara.com