All Questions Topic List
Relation and Functions Questions
Previous in All Question Next in All Question
Previous in Relation and Functions Next in Relation and Functions
Question Number 95695 by mathmax by abdo last updated on 27/May/20
solve(x+1)y′−x3y=arctan(2x)
Answered by mathmax by abdo last updated on 27/May/20
(he)⇒(x+1)y′−x3y=0⇒y′y=x3x+1⇒ln∣y∣=∫x3x+1dx+c=∫x3+1−1x+1dx+c=∫x3+1x+1dx−∫dxx+1+c=∫(x2−x+1)dx−ln∣x+1∣+c=x33−x22+x−ln∣x+1∣+c⇒y=k∣x+1∣ex33−x22+xletfindthesolutionon]−1,+∞[⇒y=kx+1ex33−x22+xmvcmethod→y′=k′x+1ex33−x22+x+k(−1(x+1)2ex33−x22+x+1x+1×(x2−x+1)ex33−x22+x)(e)⇒k′ex33−x22+x−k(x+1)ex33−x22+x+k(x2−x+1)ex33−x22+x−kx3x+1ex33−x22+x=arctan(2x)⇒k′=arctan(2x)e−x33−x22+x⇒k(x)=∫.xarctan(2u)e−u33−u22+udu+c⇒y(x)=1x+1ex33−x22+x(∫.xarctan(2u)e−u33−u22+udu+c)=cx+1ex33−x22+x+1x+1ex33−x22+x∫.xarctan(2u)e−u33−u22+udu
Terms of Service
Privacy Policy
Contact: info@tinkutara.com