Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 95697 by i jagooll last updated on 27/May/20

Answered by john santu last updated on 27/May/20

a_0 = (1/(2π)) ∫_(−π) ^π  cos at dt = (1/(2πa)) [sin at ]_(−π) ^π   = ((sin πa)/(aπ)) .  a_n  = (1/(2π)) ∫_(−π) ^π  cos (a+n)t +cos (a−n)t dt  a_n  = ((2a(−1)^n  sin aπ)/(π(a^2 −n^2 ))) . ; b_n  = 0  ⇒(1/π)∫_(−π) ^π  cos^2 at dt = 2a_0  + Σ_(n = 1) ^∞ (a_n ^2 +b_n ^2 )   ⇒1+((sin 2πa)/(2a)) = 2(((sin πa)/(aπ)))^2 +Σ_(n = 1) ^∞ ((4a^2 sin^2 aπ)/(π^2 (n^2 −a^2 )^2 ))  ⇒Σ_(n = 1) ^∞ (1/((n^2 −a^2 )^2 )) = (π^2 /(4a^2 sin^2 aπ)) [1+((sin 2πa)/(2a))] −(1/(2a^4 ))

a0=12πππcosatdt=12πa[sinat]ππ=sinπaaπ.an=12πππcos(a+n)t+cos(an)tdtan=2a(1)nsinaππ(a2n2).;bn=01πππcos2atdt=2a0+n=1(an2+bn2)1+sin2πa2a=2(sinπaaπ)2+n=14a2sin2aππ2(n2a2)2n=11(n2a2)2=π24a2sin2aπ[1+sin2πa2a]12a4

Answered by mathmax by abdo last updated on 27/May/20

let developp f at fourier serie  f(x) =(a_0 /2) +Σ_(n=1) ^∞  a_n cos(nx)  a_n =(2/T)∫_([T])   f(x)cos(nx)dx =(1/π)∫_(−π) ^π  cos(αx)cos(nx)dx  =(2/π) ∫_0 ^π  cos(αx)cos(nx)dx ⇒(π/2)a_n =(1/2)∫_0 ^π   (cos(n+α)x +cos(n−α)x)dx  ⇒πa_n =[(1/(n+α)) sin(n+α)x +(1/(n−α)) sin(n−α)x]_0 ^π   =(1/(n+α))sin(nπ +απ)+(1/(n−α))sin(nπ−απ)  =(((−1)^n  sin(απ))/(n+α)) +((−(−1)^n  sin(απ))/(n−α)) =(−1)^n  sin(απ){(1/(n+α))−(1/(n−α))}  =(−1)^n  sin(απ)(((−2α)/(n^2 −α^2 )))  a_0 =(2/π)∫_0 ^π  cos(αx)dx =(2/π)((1/α)sin(απ)) ⇒(a_0 /2) =((sin(πα))/(πα)) ⇒  cos(αx) =((sin(πα))/(πα)) −((2α)/π)Σ_(n=1) ^∞  (((−1)^n  sin(απ))/(n^2 −α^2 )) cos(nx) ⇒  ((cos(αx))/(sin(πα))) =(1/(πα)) −((2α)/π) Σ_(n=1) ^∞  (((−1)^n  cos(nx))/(n^2 −α^2 ))  x=π ⇒cota(πα) =(1/(πα))−((2α)/π) Σ_(n=1) ^∞  (1/((n^2 −α^2 ))) ⇒  cotan(πα)−(1/(πα)) =−((2α)/π) Σ_(n=1) ^∞  (1/(n^2 −α^2 )) ⇒  ((cotan(πα))/α)−(1/(πα^2 )) =−(2/π) Σ_(n=1) ^∞  (1/(n^2 −α^2 )) ⇒  (d/dα)( ((cotan(πα))/α)−(1/(πα^2 ))) =(2/π) Σ_(n=1) ^∞  ((−2α)/((n^2 −α^2 )^2 )) =((−4α)/π) Σ_(n=1) ^∞  (1/((n^2 −α^2 )^2 )) ⇒  Σ_(n=1) ^∞  (1/((n^2 −α^2 )^2 )) =−(π/(4α))×(d/dα)(((cotan(πα))/α)−(1/(πα^2 ))) rest to finish the calculus

letdeveloppfatfourierserief(x)=a02+n=1ancos(nx)an=2T[T]f(x)cos(nx)dx=1πππcos(αx)cos(nx)dx=2π0πcos(αx)cos(nx)dxπ2an=120π(cos(n+α)x+cos(nα)x)dxπan=[1n+αsin(n+α)x+1nαsin(nα)x]0π=1n+αsin(nπ+απ)+1nαsin(nπαπ)=(1)nsin(απ)n+α+(1)nsin(απ)nα=(1)nsin(απ){1n+α1nα}=(1)nsin(απ)(2αn2α2)a0=2π0πcos(αx)dx=2π(1αsin(απ))a02=sin(πα)παcos(αx)=sin(πα)πα2απn=1(1)nsin(απ)n2α2cos(nx)cos(αx)sin(πα)=1πα2απn=1(1)ncos(nx)n2α2x=πcota(πα)=1πα2απn=11(n2α2)cotan(πα)1πα=2απn=11n2α2cotan(πα)α1πα2=2πn=11n2α2ddα(cotan(πα)α1πα2)=2πn=12α(n2α2)2=4απn=11(n2α2)2n=11(n2α2)2=π4α×ddα(cotan(πα)α1πα2)resttofinishthecalculus

Terms of Service

Privacy Policy

Contact: info@tinkutara.com