All Questions Topic List
Number Theory Questions
Previous in All Question Next in All Question
Previous in Number Theory Next in Number Theory
Question Number 95697 by i jagooll last updated on 27/May/20
Answered by john santu last updated on 27/May/20
a0=12π∫π−πcosatdt=12πa[sinat]−ππ=sinπaaπ.an=12π∫π−πcos(a+n)t+cos(a−n)tdtan=2a(−1)nsinaππ(a2−n2).;bn=0⇒1π∫π−πcos2atdt=2a0+∑∞n=1(an2+bn2)⇒1+sin2πa2a=2(sinπaaπ)2+∑∞n=14a2sin2aππ2(n2−a2)2⇒∑∞n=11(n2−a2)2=π24a2sin2aπ[1+sin2πa2a]−12a4
Answered by mathmax by abdo last updated on 27/May/20
letdeveloppfatfourierserief(x)=a02+∑n=1∞ancos(nx)an=2T∫[T]f(x)cos(nx)dx=1π∫−ππcos(αx)cos(nx)dx=2π∫0πcos(αx)cos(nx)dx⇒π2an=12∫0π(cos(n+α)x+cos(n−α)x)dx⇒πan=[1n+αsin(n+α)x+1n−αsin(n−α)x]0π=1n+αsin(nπ+απ)+1n−αsin(nπ−απ)=(−1)nsin(απ)n+α+−(−1)nsin(απ)n−α=(−1)nsin(απ){1n+α−1n−α}=(−1)nsin(απ)(−2αn2−α2)a0=2π∫0πcos(αx)dx=2π(1αsin(απ))⇒a02=sin(πα)πα⇒cos(αx)=sin(πα)πα−2απ∑n=1∞(−1)nsin(απ)n2−α2cos(nx)⇒cos(αx)sin(πα)=1πα−2απ∑n=1∞(−1)ncos(nx)n2−α2x=π⇒cota(πα)=1πα−2απ∑n=1∞1(n2−α2)⇒cotan(πα)−1πα=−2απ∑n=1∞1n2−α2⇒cotan(πα)α−1πα2=−2π∑n=1∞1n2−α2⇒ddα(cotan(πα)α−1πα2)=2π∑n=1∞−2α(n2−α2)2=−4απ∑n=1∞1(n2−α2)2⇒∑n=1∞1(n2−α2)2=−π4α×ddα(cotan(πα)α−1πα2)resttofinishthecalculus
Terms of Service
Privacy Policy
Contact: info@tinkutara.com