Question and Answers Forum

All Questions      Topic List

Permutation and Combination Questions

Previous in All Question      Next in All Question      

Previous in Permutation and Combination      Next in Permutation and Combination      

Question Number 95723 by i jagooll last updated on 27/May/20

Commented by bobhans last updated on 27/May/20

the case is ssma with there are 5 women 2 men sitting in 7 chairs with no 2 men sitting side by side

Answered by Rio Michael last updated on 27/May/20

the 5 girls can stand in a row in 5! ways  let the girls be labeled as below   G_1      G_2   G_3   G_4    G_5   the first boy coming in has 6 vacancies  the second has 5 vacanciies  the third has 4 vacancies so   ⇒ number of ways = 5! × 6 × 5× 4 = 14 400 ways

$$\mathrm{the}\:\mathrm{5}\:\mathrm{girls}\:\mathrm{can}\:\mathrm{stand}\:\mathrm{in}\:\mathrm{a}\:\mathrm{row}\:\mathrm{in}\:\mathrm{5}!\:\mathrm{ways} \\ $$$$\mathrm{let}\:\mathrm{the}\:\mathrm{girls}\:\mathrm{be}\:\mathrm{labeled}\:\mathrm{as}\:\mathrm{below} \\ $$$$\:{G}_{\mathrm{1}} \:\:\:\:\:{G}_{\mathrm{2}} \:\:{G}_{\mathrm{3}} \:\:{G}_{\mathrm{4}} \:\:\:{G}_{\mathrm{5}} \\ $$$$\mathrm{the}\:\mathrm{first}\:\mathrm{boy}\:\mathrm{coming}\:\mathrm{in}\:\mathrm{has}\:\mathrm{6}\:\mathrm{vacancies} \\ $$$$\mathrm{the}\:\mathrm{second}\:\mathrm{has}\:\mathrm{5}\:\mathrm{vacanciies} \\ $$$$\mathrm{the}\:\mathrm{third}\:\mathrm{has}\:\mathrm{4}\:\mathrm{vacancies}\:\mathrm{so}\: \\ $$$$\Rightarrow\:\mathrm{number}\:\mathrm{of}\:\mathrm{ways}\:=\:\mathrm{5}!\:×\:\mathrm{6}\:×\:\mathrm{5}×\:\mathrm{4}\:=\:\mathrm{14}\:\mathrm{400}\:\mathrm{ways} \\ $$

Commented by mr W last updated on 27/May/20

14400 is correct! Rio Michael sir:  where do you think you are wrong?

$$\mathrm{14400}\:{is}\:{correct}!\:{Rio}\:{Michael}\:{sir}: \\ $$$${where}\:{do}\:{you}\:{think}\:{you}\:{are}\:{wrong}? \\ $$

Commented by i jagooll last updated on 27/May/20

your answer not include G G BGBGGB?

$$\mathrm{your}\:\mathrm{answer}\:\mathrm{not}\:\mathrm{include}\:\mathrm{G}\:\mathrm{G}\:\mathrm{BGBGGB}? \\ $$

Commented by Rio Michael last updated on 28/May/20

well sir i was in a hurry on that problem  when the others dropped thier solution  i thought i misread it.

$$\mathrm{well}\:\mathrm{sir}\:\mathrm{i}\:\mathrm{was}\:\mathrm{in}\:\mathrm{a}\:\mathrm{hurry}\:\mathrm{on}\:\mathrm{that}\:\mathrm{problem} \\ $$$$\mathrm{when}\:\mathrm{the}\:\mathrm{others}\:\mathrm{dropped}\:\mathrm{thier}\:\mathrm{solution} \\ $$$$\mathrm{i}\:\mathrm{thought}\:\mathrm{i}\:\mathrm{misread}\:\mathrm{it}. \\ $$

Answered by bobhans last updated on 27/May/20

totally arrangement = 8!  2 boy stand are together = C_2 ^3 .3! 6!  then = 8! − 6.6! = 6! ×50

$$\mathrm{totally}\:\mathrm{arrangement}\:=\:\mathrm{8}! \\ $$$$\mathrm{2}\:\mathrm{boy}\:\mathrm{stand}\:\mathrm{are}\:\mathrm{together}\:=\:\mathrm{C}_{\mathrm{2}} ^{\mathrm{3}} .\mathrm{3}!\:\mathrm{6}! \\ $$$$\mathrm{then}\:=\:\mathrm{8}!\:−\:\mathrm{6}.\mathrm{6}!\:=\:\mathrm{6}!\:×\mathrm{50}\: \\ $$

Answered by mr W last updated on 27/May/20

METHOD I  between two boys there must be at least  one girl.  we arrange at first the 5 girls, there  are 5! ways.  □G□G□G□G□G□  the 3 boys can now take three of  6 positions (□). there are C_3 ^6 ×3! ways.  so totally there are C_3 ^6 ×3!×5!=14400  ways.    METHOD II  to arrange 8 children there are 8!  ways.    to arrange them such that three boys  are together, there are 6!×3! ways.    to arrange them such that two and  only two boys are next to each other,  there are C_2 ^3 ×(7!−2×6!)×2! ways.    total valid arrangements:  8!−C_2 ^3 ×(7!−2×6!)×2!−6!×3!=14400

$${METHOD}\:{I} \\ $$$${between}\:{two}\:{boys}\:{there}\:{must}\:{be}\:{at}\:{least} \\ $$$${one}\:{girl}. \\ $$$${we}\:{arrange}\:{at}\:{first}\:{the}\:\mathrm{5}\:{girls},\:{there} \\ $$$${are}\:\mathrm{5}!\:{ways}. \\ $$$$\Box{G}\Box{G}\Box{G}\Box{G}\Box{G}\Box \\ $$$${the}\:\mathrm{3}\:{boys}\:{can}\:{now}\:{take}\:{three}\:{of} \\ $$$$\mathrm{6}\:{positions}\:\left(\Box\right).\:{there}\:{are}\:{C}_{\mathrm{3}} ^{\mathrm{6}} ×\mathrm{3}!\:{ways}. \\ $$$${so}\:{totally}\:{there}\:{are}\:{C}_{\mathrm{3}} ^{\mathrm{6}} ×\mathrm{3}!×\mathrm{5}!=\mathrm{14400} \\ $$$${ways}. \\ $$$$ \\ $$$${METHOD}\:{II} \\ $$$${to}\:{arrange}\:\mathrm{8}\:{children}\:{there}\:{are}\:\mathrm{8}! \\ $$$${ways}. \\ $$$$ \\ $$$${to}\:{arrange}\:{them}\:{such}\:{that}\:{three}\:{boys} \\ $$$${are}\:{together},\:{there}\:{are}\:\mathrm{6}!×\mathrm{3}!\:{ways}. \\ $$$$ \\ $$$${to}\:{arrange}\:{them}\:{such}\:{that}\:{two}\:{and} \\ $$$${only}\:{two}\:{boys}\:{are}\:{next}\:{to}\:{each}\:{other}, \\ $$$${there}\:{are}\:{C}_{\mathrm{2}} ^{\mathrm{3}} ×\left(\mathrm{7}!−\mathrm{2}×\mathrm{6}!\right)×\mathrm{2}!\:{ways}. \\ $$$$ \\ $$$${total}\:{valid}\:{arrangements}: \\ $$$$\mathrm{8}!−{C}_{\mathrm{2}} ^{\mathrm{3}} ×\left(\mathrm{7}!−\mathrm{2}×\mathrm{6}!\right)×\mathrm{2}!−\mathrm{6}!×\mathrm{3}!=\mathrm{14400} \\ $$

Commented by john santu last updated on 28/May/20

oo yes...your right. i′m using method II  but forgot something. ok thanks you

$$\mathrm{oo}\:\mathrm{yes}...\mathrm{your}\:\mathrm{right}.\:\mathrm{i}'\mathrm{m}\:\mathrm{using}\:\mathrm{method}\:\mathrm{II} \\ $$$$\mathrm{but}\:\mathrm{forgot}\:\mathrm{something}.\:\mathrm{ok}\:\mathrm{thanks}\:\mathrm{you} \\ $$

Commented by bobhans last updated on 28/May/20

how with ■GG■G■GG  with ■GGG■G■G ?   your answer included it ?

$$\mathrm{how}\:\mathrm{with}\:\blacksquare\mathrm{GG}\blacksquare\mathrm{G}\blacksquare\mathrm{GG} \\ $$$$\mathrm{with}\:\blacksquare\mathrm{GGG}\blacksquare\mathrm{G}\blacksquare\mathrm{G}\:?\: \\ $$$$\mathrm{your}\:\mathrm{answer}\:\mathrm{included}\:\mathrm{it}\:? \\ $$

Commented by mr W last updated on 28/May/20

yes, included.  the boys can take any three positions  from the 6 □ in:  □G□G□G□G□G□  examples:  ■G□G■G■G□G□  ■G□G□G■G■G□

$${yes},\:{included}. \\ $$$${the}\:{boys}\:{can}\:{take}\:{any}\:{three}\:{positions} \\ $$$${from}\:{the}\:\mathrm{6}\:\Box\:{in}: \\ $$$$\Box{G}\Box{G}\Box{G}\Box{G}\Box{G}\Box \\ $$$${examples}: \\ $$$$\blacksquare{G}\Box{G}\blacksquare{G}\blacksquare{G}\Box{G}\Box \\ $$$$\blacksquare{G}\Box{G}\Box{G}\blacksquare{G}\blacksquare{G}\Box \\ $$

Commented by i jagooll last updated on 28/May/20

thank you sir

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com