Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 95924 by i jagooll last updated on 28/May/20

form a Lagrangian to maximize  x^2 −y^2  subject to the   constraint 2x+y = 3?

formaLagrangiantomaximizex2y2subjecttotheconstraint2x+y=3?

Commented by john santu last updated on 29/May/20

f(x,y,λ) = x^2 −y^2 +λ(2x+y−3)  (∂f/∂x) = 2x+2λ=0 ⇒λ=−x  (∂f/∂y) = −2y+λ=0 ⇒λ=2y  (∂f/∂λ) = 2x+y−3=0 ⇒−2λ+(λ/2)=3  −3λ = 6 ⇒λ = −2⇒ { ((x=2)),((y= −1)) :}   max f(2,−1) =2^2 −(−1)^2 =3

f(x,y,λ)=x2y2+λ(2x+y3)fx=2x+2λ=0λ=xfy=2y+λ=0λ=2yfλ=2x+y3=02λ+λ2=33λ=6λ=2{x=2y=1maxf(2,1)=22(1)2=3

Answered by mr W last updated on 28/May/20

f(x,y)=x^2 −y^2   F(x,y,λ)=x^2 −y^2 +λ(2x+y−3)  (∂F/∂x)=2x+2λ=0 ⇒x=−λ  (∂F/∂y)=−2y+λ=0 ⇒y=(λ/2)  (∂F/∂λ)=2x+y−3=0 ⇒−2λ+(λ/2)−3=0 ⇒λ=−2  ⇒x=2, y=−1  f_(max) =f(2,−1)=2^2 −(−1)^2 =3    or  f(x)=x^2 −(3−2x)^2   (df/dx)=2x−2(3−2x)(−2)=0  ⇒x=2  f_(max) =f(2)=2^2 −(3−4)^2 =3

f(x,y)=x2y2F(x,y,λ)=x2y2+λ(2x+y3)Fx=2x+2λ=0x=λFy=2y+λ=0y=λ2Fλ=2x+y3=02λ+λ23=0λ=2x=2,y=1fmax=f(2,1)=22(1)2=3orf(x)=x2(32x)2dfdx=2x2(32x)(2)=0x=2fmax=f(2)=22(34)2=3

Terms of Service

Privacy Policy

Contact: info@tinkutara.com