Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 95949 by Ar Brandon last updated on 28/May/20

∫_0 ^(+∞) (x^2 /(e^x^2  −1))dx

$$\int_{\mathrm{0}} ^{+\infty} \frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{e}^{\mathrm{x}^{\mathrm{2}} } −\mathrm{1}}\mathrm{dx} \\ $$

Answered by Sourav mridha last updated on 28/May/20

  let, x^2 =t so dx=(1/(2(√t))) dt  when x=0 then t=0  and x⇒+∞ then t⇒+∞   now are integral  looks like−−  (1/2)∫_0 ^(+∞) (t^(1/2) /(e^t  −1)) dt  =((Γ((3/2)))/2)[(1/(Γ((3/2))))∫_0 ^(+∞) (t^((3/2)−1) /(e^t  −1))dt]  =((√π)/4)𝛇((3/2))

$$\:\:\mathrm{let},\:\mathrm{x}^{\mathrm{2}} =\mathrm{t}\:\mathrm{so}\:\mathrm{dx}=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{t}}}\:\mathrm{dt} \\ $$$$\mathrm{when}\:\mathrm{x}=\mathrm{0}\:\mathrm{then}\:\mathrm{t}=\mathrm{0} \\ $$$$\mathrm{and}\:\mathrm{x}\Rightarrow+\infty\:\mathrm{then}\:\mathrm{t}\Rightarrow+\infty\: \\ $$$$\mathrm{now}\:\mathrm{are}\:\mathrm{integral}\:\:\mathrm{looks}\:\mathrm{like}−− \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{+\infty} \frac{\mathrm{t}^{\frac{\mathrm{1}}{\mathrm{2}}} }{\mathrm{e}^{\mathrm{t}} \:−\mathrm{1}}\:\mathrm{dt} \\ $$$$=\frac{\Gamma\left(\frac{\mathrm{3}}{\mathrm{2}}\right)}{\mathrm{2}}\left[\frac{\mathrm{1}}{\Gamma\left(\frac{\mathrm{3}}{\mathrm{2}}\right)}\int_{\mathrm{0}} ^{+\infty} \frac{\mathrm{t}^{\frac{\mathrm{3}}{\mathrm{2}}−\mathrm{1}} }{\mathrm{e}^{\mathrm{t}} \:−\mathrm{1}}\mathrm{dt}\right] \\ $$$$=\frac{\sqrt{\pi}}{\mathrm{4}}\boldsymbol{\zeta}\left(\frac{\mathrm{3}}{\mathrm{2}}\right) \\ $$

Commented by Ar Brandon last updated on 29/May/20

Thanks mridha

Answered by abdomathmax last updated on 28/May/20

A =∫_0 ^∞   (x^2 /(e^x^2  −1))dx ⇒ A =∫_0 ^∞  ((x^2 e^(−x^2 ) )/(1−e^(−x^2 ) ))dx  =∫_0 ^∞  x^2  e^(−x^2 ) (Σ_(n=0) ^∞  e^(−nx^2 ) )dx  =Σ_(n=0) ^∞  ∫_0 ^∞ x^2  e^(−(n+1)x^2 ) dx  =_((√(n+1))x =t)    Σ_(n=0) ^∞  ∫_0 ^∞  (t^2 /(n+1)) e^(−t^2 )  (dt/(√(n+1)))  =Σ_(n=0) ^∞  (1/((n+1)(√(n+1)))) ∫_0 ^∞  t^2  e^(−t^2 ) dt  but ∫_0 ^∞  t^2  e^(−t^2 ) dt =_(t=(√u))   ∫_0 ^∞  u e^(−u)  (du/(2(√u)))  =(1/2)∫_0 ^∞  u^(1/2)  e^(−u)  du  we know Γ(x)=∫_0 ^∞  t^(x−1)  e^(−t)  dt  ⇒∫_0 ^∞  t^2  e^(−t^2 ) dt =(1/2)Γ((3/2))   A =(1/2)Γ((3/2))Σ_(n=0) ^∞  (1/((n+1)^(3/2) )) =(1/2)Γ((3/2))Σ_(n=1) ^∞  (1/n^(3/2) )  =(1/2)Γ((3/2))ξ((3/2)).

$$\mathrm{A}\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{e}^{\mathrm{x}^{\mathrm{2}} } −\mathrm{1}}\mathrm{dx}\:\Rightarrow\:\mathrm{A}\:=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{x}^{\mathrm{2}} \mathrm{e}^{−\mathrm{x}^{\mathrm{2}} } }{\mathrm{1}−\mathrm{e}^{−\mathrm{x}^{\mathrm{2}} } }\mathrm{dx} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \:\mathrm{x}^{\mathrm{2}} \:\mathrm{e}^{−\mathrm{x}^{\mathrm{2}} } \left(\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\mathrm{e}^{−\mathrm{nx}^{\mathrm{2}} } \right)\mathrm{dx} \\ $$$$=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\int_{\mathrm{0}} ^{\infty} \mathrm{x}^{\mathrm{2}} \:\mathrm{e}^{−\left(\mathrm{n}+\mathrm{1}\right)\mathrm{x}^{\mathrm{2}} } \mathrm{dx} \\ $$$$=_{\sqrt{\mathrm{n}+\mathrm{1}}\mathrm{x}\:=\mathrm{t}} \:\:\:\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{t}^{\mathrm{2}} }{\mathrm{n}+\mathrm{1}}\:\mathrm{e}^{−\mathrm{t}^{\mathrm{2}} } \:\frac{\mathrm{dt}}{\sqrt{\mathrm{n}+\mathrm{1}}} \\ $$$$=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\left(\mathrm{n}+\mathrm{1}\right)\sqrt{\mathrm{n}+\mathrm{1}}}\:\int_{\mathrm{0}} ^{\infty} \:\mathrm{t}^{\mathrm{2}} \:\mathrm{e}^{−\mathrm{t}^{\mathrm{2}} } \mathrm{dt} \\ $$$$\mathrm{but}\:\int_{\mathrm{0}} ^{\infty} \:\mathrm{t}^{\mathrm{2}} \:\mathrm{e}^{−\mathrm{t}^{\mathrm{2}} } \mathrm{dt}\:=_{\mathrm{t}=\sqrt{\mathrm{u}}} \:\:\int_{\mathrm{0}} ^{\infty} \:\mathrm{u}\:\mathrm{e}^{−\mathrm{u}} \:\frac{\mathrm{du}}{\mathrm{2}\sqrt{\mathrm{u}}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \:\mathrm{u}^{\frac{\mathrm{1}}{\mathrm{2}}} \:\mathrm{e}^{−\mathrm{u}} \:\mathrm{du}\:\:\mathrm{we}\:\mathrm{know}\:\Gamma\left(\mathrm{x}\right)=\int_{\mathrm{0}} ^{\infty} \:\mathrm{t}^{\mathrm{x}−\mathrm{1}} \:\mathrm{e}^{−\mathrm{t}} \:\mathrm{dt} \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\infty} \:\mathrm{t}^{\mathrm{2}} \:\mathrm{e}^{−\mathrm{t}^{\mathrm{2}} } \mathrm{dt}\:=\frac{\mathrm{1}}{\mathrm{2}}\Gamma\left(\frac{\mathrm{3}}{\mathrm{2}}\right)\: \\ $$$$\mathrm{A}\:=\frac{\mathrm{1}}{\mathrm{2}}\Gamma\left(\frac{\mathrm{3}}{\mathrm{2}}\right)\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\left(\mathrm{n}+\mathrm{1}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} }\:=\frac{\mathrm{1}}{\mathrm{2}}\Gamma\left(\frac{\mathrm{3}}{\mathrm{2}}\right)\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{n}^{\frac{\mathrm{3}}{\mathrm{2}}} } \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\Gamma\left(\frac{\mathrm{3}}{\mathrm{2}}\right)\xi\left(\frac{\mathrm{3}}{\mathrm{2}}\right). \\ $$

Commented by Ar Brandon last updated on 29/May/20

Thank you mathmax

Commented by mathmax by abdo last updated on 29/May/20

you are welcome.

$$\mathrm{you}\:\mathrm{are}\:\mathrm{welcome}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com