Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 96089 by bebo last updated on 29/May/20

Answered by mr W last updated on 30/May/20

Commented by mr W last updated on 30/May/20

METHOD I  point A on line 1:  x=3+3s  y=8−s  z=3+s  point B on line 2:  x=−3−3t  y=−7+2t  z=6+4t  square of distance between A & B:  D=d^2 =(3+3s+3+3t)^2 +(8−s+7−2t)^2 +(3+s−6−4t)^2   D=9(s+t+2)^2 +(s+2t−15)^2 +(s−4t−3)^2     such that d is minimum:  (∂D/∂s)=18(s+t+2)+2(s+2t−15)+2(s−4t−3)=0  ⇒11s+7t=0   ...(i)  (∂D/∂t)=18(s+t+2)+4(s+2t−15)−8(s−4t−3)=0  ⇒7s+29t=0   ...(ii)    from (i) and (ii) we get:  s=0, t=0  ⇒point on line 1 is A(3,8,3)  ⇒point on line 2 is B(−3,−7,6)    the distance between them is the  shortest distance between both lines:  d_(min) =(√((3+3)^2 +(8+7)^2 +(3−6)^2 ))=3(√(30))    eqn. of the shortest distance is AB:  ((x−3)/6)=((y+7)/(15))=((z−6)/(−3))  or  ((x−3)/2)=((y+7)/5)=((z−6)/(−1))

$$\boldsymbol{{METHOD}}\:\boldsymbol{{I}} \\ $$$${point}\:{A}\:{on}\:{line}\:\mathrm{1}: \\ $$$${x}=\mathrm{3}+\mathrm{3}{s} \\ $$$${y}=\mathrm{8}−{s} \\ $$$${z}=\mathrm{3}+{s} \\ $$$${point}\:{B}\:{on}\:{line}\:\mathrm{2}: \\ $$$${x}=−\mathrm{3}−\mathrm{3}{t} \\ $$$${y}=−\mathrm{7}+\mathrm{2}{t} \\ $$$${z}=\mathrm{6}+\mathrm{4}{t} \\ $$$${square}\:{of}\:{distance}\:{between}\:{A}\:\&\:{B}: \\ $$$${D}={d}^{\mathrm{2}} =\left(\mathrm{3}+\mathrm{3}{s}+\mathrm{3}+\mathrm{3}{t}\right)^{\mathrm{2}} +\left(\mathrm{8}−{s}+\mathrm{7}−\mathrm{2}{t}\right)^{\mathrm{2}} +\left(\mathrm{3}+{s}−\mathrm{6}−\mathrm{4}{t}\right)^{\mathrm{2}} \\ $$$${D}=\mathrm{9}\left({s}+{t}+\mathrm{2}\right)^{\mathrm{2}} +\left({s}+\mathrm{2}{t}−\mathrm{15}\right)^{\mathrm{2}} +\left({s}−\mathrm{4}{t}−\mathrm{3}\right)^{\mathrm{2}} \\ $$$$ \\ $$$${such}\:{that}\:{d}\:{is}\:{minimum}: \\ $$$$\frac{\partial{D}}{\partial{s}}=\mathrm{18}\left({s}+{t}+\mathrm{2}\right)+\mathrm{2}\left({s}+\mathrm{2}{t}−\mathrm{15}\right)+\mathrm{2}\left({s}−\mathrm{4}{t}−\mathrm{3}\right)=\mathrm{0} \\ $$$$\Rightarrow\mathrm{11}{s}+\mathrm{7}{t}=\mathrm{0}\:\:\:...\left({i}\right) \\ $$$$\frac{\partial{D}}{\partial{t}}=\mathrm{18}\left({s}+{t}+\mathrm{2}\right)+\mathrm{4}\left({s}+\mathrm{2}{t}−\mathrm{15}\right)−\mathrm{8}\left({s}−\mathrm{4}{t}−\mathrm{3}\right)=\mathrm{0} \\ $$$$\Rightarrow\mathrm{7}{s}+\mathrm{29}{t}=\mathrm{0}\:\:\:...\left({ii}\right) \\ $$$$ \\ $$$${from}\:\left({i}\right)\:{and}\:\left({ii}\right)\:{we}\:{get}: \\ $$$${s}=\mathrm{0},\:{t}=\mathrm{0} \\ $$$$\Rightarrow{point}\:{on}\:{line}\:\mathrm{1}\:{is}\:{A}\left(\mathrm{3},\mathrm{8},\mathrm{3}\right) \\ $$$$\Rightarrow{point}\:{on}\:{line}\:\mathrm{2}\:{is}\:{B}\left(−\mathrm{3},−\mathrm{7},\mathrm{6}\right) \\ $$$$ \\ $$$${the}\:{distance}\:{between}\:{them}\:{is}\:{the} \\ $$$${shortest}\:{distance}\:{between}\:{both}\:{lines}: \\ $$$${d}_{{min}} =\sqrt{\left(\mathrm{3}+\mathrm{3}\right)^{\mathrm{2}} +\left(\mathrm{8}+\mathrm{7}\right)^{\mathrm{2}} +\left(\mathrm{3}−\mathrm{6}\right)^{\mathrm{2}} }=\mathrm{3}\sqrt{\mathrm{30}} \\ $$$$ \\ $$$${eqn}.\:{of}\:{the}\:{shortest}\:{distance}\:{is}\:{AB}: \\ $$$$\frac{{x}−\mathrm{3}}{\mathrm{6}}=\frac{{y}+\mathrm{7}}{\mathrm{15}}=\frac{{z}−\mathrm{6}}{−\mathrm{3}} \\ $$$${or} \\ $$$$\frac{{x}−\mathrm{3}}{\mathrm{2}}=\frac{{y}+\mathrm{7}}{\mathrm{5}}=\frac{{z}−\mathrm{6}}{−\mathrm{1}} \\ $$

Commented by mr W last updated on 30/May/20

METHOD II  l_1 =(3,−1,1)  l_2 =(−3,2,4)  l_3 =l_1 ×l_2 =(−6,−15,3)  P(3,8,3), Q(−3,−7,6)  PQ=(6,15,−3)  d=((PQ∙l_3 )/(∣l_3 ∣))  =(((6,15,−3)∙(−6,−15,3))/(√(6^2 +15^2 +3^2 )))=3(√(30))

$$\boldsymbol{{METHOD}}\:\boldsymbol{{II}} \\ $$$$\boldsymbol{{l}}_{\mathrm{1}} =\left(\mathrm{3},−\mathrm{1},\mathrm{1}\right) \\ $$$$\boldsymbol{{l}}_{\mathrm{2}} =\left(−\mathrm{3},\mathrm{2},\mathrm{4}\right) \\ $$$$\boldsymbol{{l}}_{\mathrm{3}} ={l}_{\mathrm{1}} ×{l}_{\mathrm{2}} =\left(−\mathrm{6},−\mathrm{15},\mathrm{3}\right) \\ $$$${P}\left(\mathrm{3},\mathrm{8},\mathrm{3}\right),\:{Q}\left(−\mathrm{3},−\mathrm{7},\mathrm{6}\right) \\ $$$$\boldsymbol{{PQ}}=\left(\mathrm{6},\mathrm{15},−\mathrm{3}\right) \\ $$$${d}=\frac{\boldsymbol{{PQ}}\centerdot\boldsymbol{{l}}_{\mathrm{3}} }{\mid\boldsymbol{{l}}_{\mathrm{3}} \mid} \\ $$$$=\frac{\left(\mathrm{6},\mathrm{15},−\mathrm{3}\right)\centerdot\left(−\mathrm{6},−\mathrm{15},\mathrm{3}\right)}{\sqrt{\mathrm{6}^{\mathrm{2}} +\mathrm{15}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} }}=\mathrm{3}\sqrt{\mathrm{30}} \\ $$

Answered by Sourav mridha last updated on 30/May/20

((x+3)/(−3))=((y+7)/2)=((z−6)/4) this line is going   through the point (say)p(−3,−7,6)  for the straight line−−  ((x−3)/3)=((y−8)/(−1))=((z−3)/1),any point on this line  described by a parameter t ,like that  L(3+3t,8−t,3+t).  the shortest distance means the  perpendicular distance bet^n  this two  lines,lets say ⊥_r  distance is PL.(([  the DR of PL is  [6+3t,15−t,−3+t]  PL is both ⊥_r  to two lines so:  3(6+3t)−1(15−t)+1(−3+t)=0  ⇒18+9t−15+t−3+t=0  so     t=0  the poit L(3,8,3)  and we know p(−3,−7,6)  so ∣PL∣=(√(6^2 +15^2 +3^2 ))=(√(270))=3(√(30))unit  now the eq^n  of PL in cartetian form       ((x+3)/6)=((y+7)/(15))=((z−6)/(−3))  or in vector form  r=(−3i^� −7j^� +6k^� )+t(6i^� +15j^� −3k^� )

$$\frac{\mathrm{x}+\mathrm{3}}{−\mathrm{3}}=\frac{\mathrm{y}+\mathrm{7}}{\mathrm{2}}=\frac{\mathrm{z}−\mathrm{6}}{\mathrm{4}}\:\mathrm{this}\:\mathrm{line}\:\mathrm{is}\:\mathrm{going}\: \\ $$$$\mathrm{through}\:\mathrm{the}\:\mathrm{point}\:\left(\mathrm{say}\right)\boldsymbol{\mathrm{p}}\left(−\mathrm{3},−\mathrm{7},\mathrm{6}\right) \\ $$$$\mathrm{for}\:\mathrm{the}\:\mathrm{straight}\:\mathrm{line}−− \\ $$$$\frac{\mathrm{x}−\mathrm{3}}{\mathrm{3}}=\frac{\mathrm{y}−\mathrm{8}}{−\mathrm{1}}=\frac{\mathrm{z}−\mathrm{3}}{\mathrm{1}},\mathrm{any}\:\mathrm{point}\:\mathrm{on}\:\mathrm{this}\:\mathrm{line} \\ $$$$\mathrm{described}\:\mathrm{by}\:\mathrm{a}\:\mathrm{parameter}\:\boldsymbol{\mathrm{t}}\:,\mathrm{like}\:\mathrm{that} \\ $$$$\mathrm{L}\left(\mathrm{3}+\mathrm{3t},\mathrm{8}−\boldsymbol{\mathrm{t}},\mathrm{3}+\mathrm{t}\right). \\ $$$$\mathrm{the}\:\mathrm{shortest}\:\mathrm{distance}\:\mathrm{means}\:\mathrm{the} \\ $$$$\mathrm{perpendicular}\:\mathrm{distance}\:\mathrm{bet}^{\mathrm{n}} \:\mathrm{this}\:\mathrm{two} \\ $$$$\mathrm{lines},\mathrm{lets}\:\mathrm{say}\:\bot_{\mathrm{r}} \:\mathrm{distance}\:\mathrm{is}\:\mathrm{P}\boldsymbol{\mathrm{L}}.\left(\left(\left[\right.\right.\right. \\ $$$$\mathrm{the}\:\mathrm{DR}\:\mathrm{of}\:\mathrm{PL}\:\mathrm{is} \\ $$$$\left[\mathrm{6}+\mathrm{3t},\mathrm{15}−\mathrm{t},−\mathrm{3}+\mathrm{t}\right] \\ $$$$\mathrm{PL}\:\mathrm{is}\:\mathrm{both}\:\bot_{\mathrm{r}} \:\mathrm{to}\:\mathrm{two}\:\mathrm{lines}\:\mathrm{so}: \\ $$$$\mathrm{3}\left(\mathrm{6}+\mathrm{3t}\right)−\mathrm{1}\left(\mathrm{15}−\mathrm{t}\right)+\mathrm{1}\left(−\mathrm{3}+\mathrm{t}\right)=\mathrm{0} \\ $$$$\Rightarrow\mathrm{18}+\mathrm{9t}−\mathrm{15}+\mathrm{t}−\mathrm{3}+\mathrm{t}=\mathrm{0} \\ $$$$\mathrm{so}\:\:\:\:\:\boldsymbol{{t}}=\mathrm{0} \\ $$$$\boldsymbol{{the}}\:\boldsymbol{{poit}}\:\boldsymbol{{L}}\left(\mathrm{3},\mathrm{8},\mathrm{3}\right) \\ $$$$\mathrm{and}\:\mathrm{we}\:\mathrm{know}\:\boldsymbol{{p}}\left(−\mathrm{3},−\mathrm{7},\mathrm{6}\right) \\ $$$$\mathrm{so}\:\mid\boldsymbol{{PL}}\mid=\sqrt{\mathrm{6}^{\mathrm{2}} +\mathrm{15}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} }=\sqrt{\mathrm{270}}=\mathrm{3}\sqrt{\mathrm{30}}\mathrm{unit} \\ $$$$\mathrm{now}\:\mathrm{the}\:\mathrm{eq}^{\mathrm{n}} \:\mathrm{of}\:\boldsymbol{{PL}}\:\mathrm{in}\:\mathrm{cartetian}\:\mathrm{form} \\ $$$$\:\:\:\:\:\frac{\boldsymbol{{x}}+\mathrm{3}}{\mathrm{6}}=\frac{\boldsymbol{{y}}+\mathrm{7}}{\mathrm{15}}=\frac{\boldsymbol{{z}}−\mathrm{6}}{−\mathrm{3}} \\ $$$$\boldsymbol{{or}}\:\boldsymbol{{in}}\:\boldsymbol{{vector}}\:\boldsymbol{{form}} \\ $$$$\boldsymbol{{r}}=\left(−\mathrm{3}\hat {\mathrm{i}}−\mathrm{7}\hat {\mathrm{j}}+\mathrm{6}\hat {\mathrm{k}}\right)+\mathrm{t}\left(\mathrm{6}\hat {\mathrm{i}}+\mathrm{15}\hat {\mathrm{j}}−\mathrm{3}\hat {\mathrm{k}}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com