Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 96189 by bemath last updated on 30/May/20

find a common roots from  the two quadratic eq  24x^2 +(p+4)x−1=0  and 6x^2 +11x+p+2=0

$$\mathrm{find}\:\mathrm{a}\:\mathrm{common}\:\mathrm{roots}\:\mathrm{from} \\ $$$$\mathrm{the}\:\mathrm{two}\:\mathrm{quadratic}\:\mathrm{eq} \\ $$$$\mathrm{24x}^{\mathrm{2}} +\left(\mathrm{p}+\mathrm{4}\right)\mathrm{x}−\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{and}\:\mathrm{6x}^{\mathrm{2}} +\mathrm{11x}+\mathrm{p}+\mathrm{2}=\mathrm{0} \\ $$

Answered by john santu last updated on 30/May/20

by Wildberger′s theorem  if two quadratic eq : x^2 +Ax+B=0  and x^2 +Cx+D=0 have a common  roots it′s ⇒ x = ((D−B)/(A−C))  (i)x^2 +(((p+4)/(24)))x−(1/(24)) = 0  (ii) x^2 +(((11)/6))x+(((p+2)/6))=0  so the common roots   is x = ((((p+2)/6)+(1/(24)))/((((p+4)/(24)))−((11)/6))) = ((4p+9)/(p+4−44))  x = ((4p+9)/(p−40))

$$\mathrm{by}\:\mathrm{Wildberger}'\mathrm{s}\:\mathrm{theorem} \\ $$$$\mathrm{if}\:\mathrm{two}\:\mathrm{quadratic}\:\mathrm{eq}\::\:\mathrm{x}^{\mathrm{2}} +\mathrm{Ax}+\mathrm{B}=\mathrm{0} \\ $$$$\mathrm{and}\:\mathrm{x}^{\mathrm{2}} +\mathrm{Cx}+\mathrm{D}=\mathrm{0}\:\mathrm{have}\:\mathrm{a}\:\mathrm{common} \\ $$$$\mathrm{roots}\:\mathrm{it}'\mathrm{s}\:\Rightarrow\:{x}\:=\:\frac{{D}−\mathrm{B}}{\mathrm{A}−\mathrm{C}} \\ $$$$\left(\mathrm{i}\right){x}^{\mathrm{2}} +\left(\frac{{p}+\mathrm{4}}{\mathrm{24}}\right){x}−\frac{\mathrm{1}}{\mathrm{24}}\:=\:\mathrm{0} \\ $$$$\left(\mathrm{ii}\right)\:{x}^{\mathrm{2}} +\left(\frac{\mathrm{11}}{\mathrm{6}}\right){x}+\left(\frac{{p}+\mathrm{2}}{\mathrm{6}}\right)=\mathrm{0} \\ $$$${so}\:{the}\:{common}\:{roots}\: \\ $$$${is}\:{x}\:=\:\frac{\frac{{p}+\mathrm{2}}{\mathrm{6}}+\frac{\mathrm{1}}{\mathrm{24}}}{\left(\frac{{p}+\mathrm{4}}{\mathrm{24}}\right)−\frac{\mathrm{11}}{\mathrm{6}}}\:=\:\frac{\mathrm{4}{p}+\mathrm{9}}{{p}+\mathrm{4}−\mathrm{44}} \\ $$$${x}\:=\:\frac{\mathrm{4}{p}+\mathrm{9}}{{p}−\mathrm{40}}\: \\ $$

Commented by bemath last updated on 30/May/20

wow ... I just found out the theorem mister

Commented by mr W last updated on 30/May/20

only for certain values of p have both  equations a common root.

$${only}\:{for}\:{certain}\:{values}\:{of}\:{p}\:{have}\:{both} \\ $$$${equations}\:{a}\:{common}\:{root}. \\ $$

Commented by john santu last updated on 30/May/20

Yes, right

Answered by mr W last updated on 30/May/20

let′s say eqn. 1 has roots: α, β  eqn. 2 has roots: β, γ  α+β=−((p+4)/(24))  αβ=−(1/(24))  β+γ=−((11)/6)  βγ=((p+2)/6)  ⇒(((p+4)/(24))+β)β=(1/(24))   ...(i)  ⇒(((11)/6)+β)β=−((p+2)/6)   ...(ii)  from (ii):  ((p+4)/(24))=(1/(12))−(1/4)(((11)/6)+β)β  put this into (i):  6β^3 −13β^2 −2β+1=0  ⇒(3β+1)(2β^2 −5β+1)=0  ⇒3β+1=0 ⇒β=−(1/3)  ⇒2β^2 −5β+1=0 ⇒β=((5±(√(17)))/4)    i.e. the common root can be  −(1/3), ((5−(√(17)))/4), ((5+(√(17)))/4)    p=−2−6(((11)/6)+β)β  ⇒p=1  ⇒p=−((63−13(√(17)))/2)≈−4.7  ⇒p=−((63+13(√(17)))/2)≈−58.3

$${let}'{s}\:{say}\:{eqn}.\:\mathrm{1}\:{has}\:{roots}:\:\alpha,\:\beta \\ $$$${eqn}.\:\mathrm{2}\:{has}\:{roots}:\:\beta,\:\gamma \\ $$$$\alpha+\beta=−\frac{{p}+\mathrm{4}}{\mathrm{24}} \\ $$$$\alpha\beta=−\frac{\mathrm{1}}{\mathrm{24}} \\ $$$$\beta+\gamma=−\frac{\mathrm{11}}{\mathrm{6}} \\ $$$$\beta\gamma=\frac{{p}+\mathrm{2}}{\mathrm{6}} \\ $$$$\Rightarrow\left(\frac{{p}+\mathrm{4}}{\mathrm{24}}+\beta\right)\beta=\frac{\mathrm{1}}{\mathrm{24}}\:\:\:...\left({i}\right) \\ $$$$\Rightarrow\left(\frac{\mathrm{11}}{\mathrm{6}}+\beta\right)\beta=−\frac{{p}+\mathrm{2}}{\mathrm{6}}\:\:\:...\left({ii}\right) \\ $$$${from}\:\left({ii}\right): \\ $$$$\frac{{p}+\mathrm{4}}{\mathrm{24}}=\frac{\mathrm{1}}{\mathrm{12}}−\frac{\mathrm{1}}{\mathrm{4}}\left(\frac{\mathrm{11}}{\mathrm{6}}+\beta\right)\beta \\ $$$${put}\:{this}\:{into}\:\left({i}\right): \\ $$$$\mathrm{6}\beta^{\mathrm{3}} −\mathrm{13}\beta^{\mathrm{2}} −\mathrm{2}\beta+\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow\left(\mathrm{3}\beta+\mathrm{1}\right)\left(\mathrm{2}\beta^{\mathrm{2}} −\mathrm{5}\beta+\mathrm{1}\right)=\mathrm{0} \\ $$$$\Rightarrow\mathrm{3}\beta+\mathrm{1}=\mathrm{0}\:\Rightarrow\beta=−\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\Rightarrow\mathrm{2}\beta^{\mathrm{2}} −\mathrm{5}\beta+\mathrm{1}=\mathrm{0}\:\Rightarrow\beta=\frac{\mathrm{5}\pm\sqrt{\mathrm{17}}}{\mathrm{4}} \\ $$$$ \\ $$$${i}.{e}.\:{the}\:{common}\:{root}\:{can}\:{be} \\ $$$$−\frac{\mathrm{1}}{\mathrm{3}},\:\frac{\mathrm{5}−\sqrt{\mathrm{17}}}{\mathrm{4}},\:\frac{\mathrm{5}+\sqrt{\mathrm{17}}}{\mathrm{4}} \\ $$$$ \\ $$$${p}=−\mathrm{2}−\mathrm{6}\left(\frac{\mathrm{11}}{\mathrm{6}}+\beta\right)\beta \\ $$$$\Rightarrow{p}=\mathrm{1} \\ $$$$\Rightarrow{p}=−\frac{\mathrm{63}−\mathrm{13}\sqrt{\mathrm{17}}}{\mathrm{2}}\approx−\mathrm{4}.\mathrm{7} \\ $$$$\Rightarrow{p}=−\frac{\mathrm{63}+\mathrm{13}\sqrt{\mathrm{17}}}{\mathrm{2}}\approx−\mathrm{58}.\mathrm{3} \\ $$

Answered by 1549442205 last updated on 30/May/20

Denoting x_0  common root of two equations.Then   { (( 24x_0 ^2  +(p+4)x_0 −1=0(1))),((6x_0 ^2  +11x_0 +p+2=0 (2))) :}  ⇔ { ((24x_0 ^2  +(p+4)x_0 −1=0)),((24x_0 +44x_0 +4p+8=0)) :}  ⇒(p+4)x_0 −1=44x_0 +4p+8  ⇒(p−40)x_0 =4p+9⇒x_0 =((4p+9)/(p−40)).Replace into (2)  ⇒6(((4p+9)/(p−40)))^2 +11(((4p+9)/(p−40)))+p+2=0  ⇔6(16p^2 +72p+81)+11(4p^2 −151p−360)  +(p+2)(p^2 −80p+1600)=0⇔  140p^2 −1229p−3474+p^3 −78p^2 +1440p  +3200=0⇔p^3 +62p^2 +211p−274=0  ⇔(p−1)(p^2 +63p+274)=0  a/p=1⇒x_0 =((−1)/3)  b/p^2 +63p+274=0⇔p=((−63±13(√(17)))/2)  ⇒x_0 ∈{((5−(√(17)))/4);(((√(17))+5)/4)}  Thus,two given equations have three  common

$$\mathrm{Denoting}\:\mathrm{x}_{\mathrm{0}} \:\mathrm{common}\:\mathrm{root}\:\mathrm{of}\:\mathrm{two}\:\mathrm{equations}.\mathrm{Then} \\ $$$$\begin{cases}{\:\mathrm{24x}_{\mathrm{0}} ^{\mathrm{2}} \:+\left(\mathrm{p}+\mathrm{4}\right)\mathrm{x}_{\mathrm{0}} −\mathrm{1}=\mathrm{0}\left(\mathrm{1}\right)}\\{\mathrm{6x}_{\mathrm{0}} ^{\mathrm{2}} \:+\mathrm{11x}_{\mathrm{0}} +\mathrm{p}+\mathrm{2}=\mathrm{0}\:\left(\mathrm{2}\right)}\end{cases} \\ $$$$\Leftrightarrow\begin{cases}{\mathrm{24x}_{\mathrm{0}} ^{\mathrm{2}} \:+\left(\mathrm{p}+\mathrm{4}\right)\mathrm{x}_{\mathrm{0}} −\mathrm{1}=\mathrm{0}}\\{\mathrm{24x}_{\mathrm{0}} +\mathrm{44x}_{\mathrm{0}} +\mathrm{4p}+\mathrm{8}=\mathrm{0}}\end{cases} \\ $$$$\Rightarrow\left(\mathrm{p}+\mathrm{4}\right)\mathrm{x}_{\mathrm{0}} −\mathrm{1}=\mathrm{44x}_{\mathrm{0}} +\mathrm{4p}+\mathrm{8} \\ $$$$\Rightarrow\left(\mathrm{p}−\mathrm{40}\right)\mathrm{x}_{\mathrm{0}} =\mathrm{4p}+\mathrm{9}\Rightarrow\mathrm{x}_{\mathrm{0}} =\frac{\mathrm{4p}+\mathrm{9}}{\mathrm{p}−\mathrm{40}}.\mathrm{Replace}\:\mathrm{into}\:\left(\mathrm{2}\right) \\ $$$$\Rightarrow\mathrm{6}\left(\frac{\mathrm{4p}+\mathrm{9}}{\mathrm{p}−\mathrm{40}}\right)^{\mathrm{2}} +\mathrm{11}\left(\frac{\mathrm{4p}+\mathrm{9}}{\mathrm{p}−\mathrm{40}}\right)+\mathrm{p}+\mathrm{2}=\mathrm{0} \\ $$$$\Leftrightarrow\mathrm{6}\left(\mathrm{16p}^{\mathrm{2}} +\mathrm{72p}+\mathrm{81}\right)+\mathrm{11}\left(\mathrm{4p}^{\mathrm{2}} −\mathrm{151p}−\mathrm{360}\right) \\ $$$$+\left(\mathrm{p}+\mathrm{2}\right)\left(\mathrm{p}^{\mathrm{2}} −\mathrm{80p}+\mathrm{1600}\right)=\mathrm{0}\Leftrightarrow \\ $$$$\mathrm{140p}^{\mathrm{2}} −\mathrm{1229p}−\mathrm{3474}+\mathrm{p}^{\mathrm{3}} −\mathrm{78p}^{\mathrm{2}} +\mathrm{1440p} \\ $$$$+\mathrm{3200}=\mathrm{0}\Leftrightarrow\mathrm{p}^{\mathrm{3}} +\mathrm{62p}^{\mathrm{2}} +\mathrm{211p}−\mathrm{274}=\mathrm{0} \\ $$$$\Leftrightarrow\left(\mathrm{p}−\mathrm{1}\right)\left(\mathrm{p}^{\mathrm{2}} +\mathrm{63p}+\mathrm{274}\right)=\mathrm{0} \\ $$$$\mathrm{a}/\mathrm{p}=\mathrm{1}\Rightarrow\mathrm{x}_{\mathrm{0}} =\frac{−\mathrm{1}}{\mathrm{3}} \\ $$$$\mathrm{b}/\mathrm{p}^{\mathrm{2}} +\mathrm{63p}+\mathrm{274}=\mathrm{0}\Leftrightarrow\mathrm{p}=\frac{−\mathrm{63}\pm\mathrm{13}\sqrt{\mathrm{17}}}{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{x}_{\mathrm{0}} \in\left\{\frac{\mathrm{5}−\sqrt{\mathrm{17}}}{\mathrm{4}};\frac{\sqrt{\mathrm{17}}+\mathrm{5}}{\mathrm{4}}\right\} \\ $$$$\mathrm{Thus},\mathrm{two}\:\mathrm{given}\:\mathrm{equations}\:\mathrm{have}\:\mathrm{three} \\ $$$$\mathrm{common} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com