Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 96192 by 1549442205 last updated on 30/May/20

find a particular solution to the equation  y′ =(y/x)+sin(y/x) with original condition  y(1)=(π/2)

$$\mathrm{find}\:\mathrm{a}\:\mathrm{particular}\:\mathrm{solution}\:\mathrm{to}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\mathrm{y}'\:=\frac{\mathrm{y}}{\mathrm{x}}+\mathrm{sin}\frac{\mathrm{y}}{\mathrm{x}}\:\mathrm{with}\:\mathrm{original}\:\mathrm{condition} \\ $$$$\mathrm{y}\left(\mathrm{1}\right)=\frac{\pi}{\mathrm{2}} \\ $$

Commented by john santu last updated on 30/May/20

set v =(y/x) ⇒(dy/dx) = v +x (dv/dx)   v+x (dv/dx) = v +sin v   x (dv/dx) = sin v ⇒ ∫ (dv/(sin v)) = ∫ (dx/x)  ∫ csc v dv = ln(x) + c  ln (csc v−cot v) = ln Cx  csc v −cot v = Cx  ((1−cos ((y/x)))/(sin ((y/x)))) = Cx   1−cos ((y/x)) = Cx sin ((y/x))

$$\mathrm{set}\:{v}\:=\frac{{y}}{{x}}\:\Rightarrow\frac{\mathrm{dy}}{\mathrm{dx}}\:=\:{v}\:+{x}\:\frac{{dv}}{{dx}}\: \\ $$$${v}+{x}\:\frac{{dv}}{{dx}}\:=\:{v}\:+\mathrm{sin}\:{v}\: \\ $$$${x}\:\frac{{dv}}{{dx}}\:=\:\mathrm{sin}\:{v}\:\Rightarrow\:\int\:\frac{{dv}}{\mathrm{sin}\:{v}}\:=\:\int\:\frac{{dx}}{{x}} \\ $$$$\int\:\mathrm{csc}\:{v}\:{dv}\:=\:\mathrm{ln}\left({x}\right)\:+\:{c} \\ $$$$\mathrm{ln}\:\left(\mathrm{csc}\:{v}−\mathrm{cot}\:{v}\right)\:=\:\mathrm{ln}\:\mathrm{C}{x} \\ $$$${csc}\:{v}\:−\mathrm{cot}\:{v}\:=\:\mathrm{C}{x} \\ $$$$\frac{\mathrm{1}−\mathrm{cos}\:\left(\frac{{y}}{{x}}\right)}{\mathrm{sin}\:\left(\frac{{y}}{{x}}\right)}\:=\:{Cx}\: \\ $$$$\mathrm{1}−\mathrm{cos}\:\left(\frac{{y}}{{x}}\right)\:=\:{Cx}\:\mathrm{sin}\:\left(\frac{{y}}{{x}}\right) \\ $$$$ \\ $$

Commented by 1549442205 last updated on 11/Jun/20

This is an other way  Put (y/x)=t⇒y=tx⇒dy=xdt+tdx.Hence,  xdt+tdx=(t+sint)dx⇒xdt=sintdx  ⇒(dt/(sint))=(dx/x).Integrate two sides we get  ln∣tan((t/2))∣=ln∣x∣+lnC.From that∣  (t/2)=arctan(Cx)⇒y=2x.arctan(Cx)  Using the original condition we get  (π/2)=2arctanC⇒C=1.Thus,the   particular solution has form:  y=2x.arctanx

$$\mathrm{This}\:\mathrm{is}\:\mathrm{an}\:\mathrm{other}\:\mathrm{way} \\ $$$$\mathrm{Put}\:\frac{\mathrm{y}}{\mathrm{x}}=\mathrm{t}\Rightarrow\mathrm{y}=\mathrm{tx}\Rightarrow\mathrm{dy}=\mathrm{xdt}+\mathrm{tdx}.\mathrm{Hence}, \\ $$$$\mathrm{xdt}+\mathrm{tdx}=\left(\mathrm{t}+\mathrm{sint}\right)\mathrm{dx}\Rightarrow\mathrm{xdt}=\mathrm{sintdx} \\ $$$$\Rightarrow\frac{\mathrm{dt}}{\mathrm{sint}}=\frac{\mathrm{dx}}{\mathrm{x}}.\mathrm{Integrate}\:\mathrm{two}\:\mathrm{sides}\:\mathrm{we}\:\mathrm{get} \\ $$$$\mathrm{ln}\mid\mathrm{tan}\left(\frac{\mathrm{t}}{\mathrm{2}}\right)\mid=\mathrm{ln}\mid\mathrm{x}\mid+\mathrm{lnC}.\mathrm{From}\:\mathrm{that}\mid \\ $$$$\frac{\mathrm{t}}{\mathrm{2}}=\mathrm{arctan}\left(\mathrm{Cx}\right)\Rightarrow\mathrm{y}=\mathrm{2x}.\mathrm{arctan}\left(\mathrm{Cx}\right) \\ $$$$\mathrm{Using}\:\mathrm{the}\:\mathrm{original}\:\mathrm{condition}\:\mathrm{we}\:\mathrm{get} \\ $$$$\frac{\pi}{\mathrm{2}}=\mathrm{2arctanC}\Rightarrow\mathrm{C}=\mathrm{1}.\mathrm{Thus},\mathrm{the}\: \\ $$$$\mathrm{particular}\:\mathrm{solution}\:\mathrm{has}\:\mathrm{form}: \\ $$$$\boldsymbol{\mathrm{y}}=\mathrm{2}\boldsymbol{\mathrm{x}}.\boldsymbol{\mathrm{arctanx}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com