Question and Answers Forum

All Questions      Topic List

Vector Questions

Previous in All Question      Next in All Question      

Previous in Vector      Next in Vector      

Question Number 96240 by mr W last updated on 30/May/20

Find the shortest distance from the  point P(2,−3,5) to the line L  ((x+3)/2)=((y−1)/(−3))=((z−2)/4)

FindtheshortestdistancefromthepointP(2,3,5)tothelineLx+32=y13=z24

Answered by 1549442205 last updated on 31/May/20

Denote Q be the point on L such that  PQ⊥L⇒Q(2t−3;−3t+1;4t+2).Then  PQ^(→) =(2t−5;−3t+4;4t−3).The direction   vector of  L is p^(→) =(2;−3;4) perpemdicular  to PQ^(→) .Hence,p^(→) .PQ^(→) =0⇔2(2t−5)+3(3t−4)  +4(4t−3)⇔29t−34=0⇒t=((34)/(29)).From that  PQ^(→) =(((−77)/(29));((14)/(29));((49)/(29)))⇒PQ=((7(√(11^2 +2^2 +7^2 )))/(29))=  ((7(√(174)))/(29)) is shortest distance from P to L

DenoteQbethepointonLsuchthatPQLQ(2t3;3t+1;4t+2).ThenPQ=(2t5;3t+4;4t3).ThedirectionvectorofLisp=(2;3;4)perpemdiculartoPQ.Hence,p.PQ=02(2t5)+3(3t4)+4(4t3)29t34=0t=3429.FromthatPQ=(7729;1429;4929)PQ=7112+22+7229=717429isshortestdistancefromPtoL

Commented by mr W last updated on 31/May/20

thank you sir!

thankyousir!

Answered by john santu last updated on 31/May/20

let S(2s−3, −3s+1, 5s+2) a point   on line L . take vector PS = (2s−5,−3s+4,5s−3)  PS ⊥n=(2,−3,4)   4s−10+9s−12+20s−12=0  33s = 34 ⇒s = ((34)/(33))  PS(−((97)/(33)) , ((30)/(33)), ((71)/(33))).  ∣PS∣ = ((√(15,350))/(33)) ≈ 3.754397483

letS(2s3,3s+1,5s+2)apointonlineL.takevectorPS=(2s5,3s+4,5s3)PSn=(2,3,4)4s10+9s12+20s12=033s=34s=3433PS(9733,3033,7133).PS=15,350333.754397483

Commented by mr W last updated on 31/May/20

thank you sir!  typo in first line 5s+2 ?  s=((34)/(29)) ?

thankyousir!typoinfirstline5s+2?s=3429?

Commented by bobhans last updated on 31/May/20

mr santu typo in 5s+2   it should be 4s+2

mrsantutypoin5s+2itshouldbe4s+2

Answered by mr W last updated on 31/May/20

METHOD  I  any point on line Q:  x=−3+2k  y=1−3k  z=2+4k  distance PQ=d  D=d^2 =(2+3−2k)^2 +(−3−1+3k)^2 +(5−2−4k)^2   D=(2k−5)^2 +(3k−4)^2 +(4k−3)^2   such that d is minimum:  (dD/dk)=2(2k−5)2+2(3k−4)3+2(4k−3)4=0  ⇒29k=34  ⇒k=((34)/(29))  d_(min) =(√((2×((34)/(29))−5)^2 +(3×((34)/(29))−4)^2 +(4×((34)/(29))−3)^2 ))=((7(√(174)))/(29))    METHOD  II  known point on line R(−3,1,2)  PR^(→) =(5,−4,3)  l^→ =(2,−3,4)  cos θ=((PR∙l)/(∣PR∣∣l∣))  d=∣PR∣ sin θ=∣PR∣(√(1−(((PR∙l)/(∣PR∣∣l∣)))^2 ))  d=(√(∣PR∣^2 −(((PR∙l)^2 )/(∣l∣^2 ))))  d=(√(5^2 +4^2 +3^2 −(((5×2+4×3+3×4)^2 )/(2^2 +3^2 +4^2 ))))  d=(√(50−((34^2 )/(29))))=((7(√(174)))/(29))    METHOD  III  plane perpendicular to line L is  2x−3y+4z+s=0    point P is on the plane:  2×2−3×(−3)+4×5+s=0  s=−33  ⇒2x−3y+4z−33=0    intersection of line with plane at Q:  x=−3+2k  y=1−3k  z=2+4k  2(−3+2k)−3(1−3k)+4(2+4k)−33=0  29k−34=0  ⇒k=((34)/(29))  PQ=(√((2+3−2k)^2 +(−3−1+3k)^2 +(5−2−4k)^2 ))  PQ=(√((5−2k)^2 +(−4+3k)^2 +(3−4k)^2 ))  PQ=(√((5−2×((34)/(29)))^2 +(−4+3×((34)/(29)))^2 +(3−4×((34)/(29)))^2 ))  d_(min) =PQ=((7(√(174)))/(29))    METHOD  IV  point on line Q(−3+2k, 1−3k, 2+4k)  l^→ =(2,−3,4)  PQ^(→) =(2+3−2k,−3−1+3k,5−2−4k)  PQ^(→) =(5−2k,−4+3k,3−4k)  such that PQ^(→) ⊥l^(→) :  (5−2k)×2×(−4+3k)×(−3)+(3−4k)×4=0  ⇒k=((34)/(29))  d_(min) =∣PQ∣=(√((5−2×((34)/(29)))^2 +(−4+3×((34)/(29)))^2 +(3−4×((34)/(29)))^2 ))  =((7(√(174)))/(29))    METHOD  V  known point on line R(−3,1,2)  PR^(→) =(5,−4,3)  l^→ =(2,−3,4)  ∣l^→ ∣=(√(2^2 +3^2 +4^2 ))=(√(29))  PR^(→) ×l^→ =(5,−4,3)×(2,−3,4)=(−7,−14,−7)  ∣PR^(→) ×l^→ ∣=(√(7^2 +14^2 +7^2 ))=7(√6)  d=((∣PR×l^→ ∣)/(∣l^→ ∣))=((7(√6))/(√(29)))=((7(√(174)))/(29))

METHODIanypointonlineQ:x=3+2ky=13kz=2+4kdistancePQ=dD=d2=(2+32k)2+(31+3k)2+(524k)2D=(2k5)2+(3k4)2+(4k3)2suchthatdisminimum:dDdk=2(2k5)2+2(3k4)3+2(4k3)4=029k=34k=3429dmin=(2×34295)2+(3×34294)2+(4×34293)2=717429METHODIIknownpointonlineR(3,1,2)PR=(5,4,3)l=(2,3,4)cosθ=PRlPR∣∣ld=∣PRsinθ=∣PR1(PRlPR∣∣l)2d=PR2(PRl)2l2d=52+42+32(5×2+4×3+3×4)222+32+42d=5034229=717429METHODIIIplaneperpendiculartolineLis2x3y+4z+s=0pointPisontheplane:2×23×(3)+4×5+s=0s=332x3y+4z33=0intersectionoflinewithplaneatQ:x=3+2ky=13kz=2+4k2(3+2k)3(13k)+4(2+4k)33=029k34=0k=3429PQ=(2+32k)2+(31+3k)2+(524k)2PQ=(52k)2+(4+3k)2+(34k)2PQ=(52×3429)2+(4+3×3429)2+(34×3429)2dmin=PQ=717429METHODIVpointonlineQ(3+2k,13k,2+4k)l=(2,3,4)PQ=(2+32k,31+3k,524k)PQ=(52k,4+3k,34k)suchthatPQl:(52k)×2×(4+3k)×(3)+(34k)×4=0k=3429dmin=∣PQ∣=(52×3429)2+(4+3×3429)2+(34×3429)2=717429METHODVknownpointonlineR(3,1,2)PR=(5,4,3)l=(2,3,4)l∣=22+32+42=29PR×l=(5,4,3)×(2,3,4)=(7,14,7)PR×l∣=72+142+72=76d=PR×ll=7629=717429

Commented by bobhans last updated on 31/May/20

waw====great

waw====great

Commented by mr W last updated on 31/May/20

Method II is my favourite method  d_(min) =(√(∣RP^(→) ∣^2 −(((RP^(→)  •l^(→) )^2 )/(∣l^(→) ∣^2 ))))  this formula is not teached in school  and in book.

MethodIIismyfavouritemethoddmin=RP2(RPl)2l2thisformulaisnotteachedinschoolandinbook.

Commented by mr W last updated on 31/May/20

Commented by bobhans last updated on 31/May/20

whether the point R is arbitrarily provided it lies on the L line

Commented by bobhans last updated on 31/May/20

this method from Pytagorean theorem?

thismethodfromPytagoreantheorem?

Terms of Service

Privacy Policy

Contact: info@tinkutara.com