Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 96282 by 675480065 last updated on 31/May/20

Answered by bemath last updated on 31/May/20

look qn 94383

lookqn94383

Answered by 1549442205 last updated on 31/May/20

We have x^4 +1=(x^2 +1)^2 −2x^2 =(x^2 +(√2) x+1)(x^2 −(√2) x+1)  Hence,(1/(x^4 +1))=((ax+b)/(x^2 +(√(2 ))x+1))+((cx+d)/(x^2 −(√2)x+1))  ⇔1=(a+c)x^3 +[b+d+(√2)(c−a)]x^2 +[(√2)(c−b)+a+c]x+b+d   { ((a+c=0)),((b+d=1)) :}   { ((b+d+(√2)(c−a)=0)),(((√2)(c−b)+a+c=0)) :}  Deduce  a=(1/(2(√2))),b=c=((−1)/(2(√2))),d=1+(1/(2(√2))).  hen ∫(dx/(x^4 +1))=(1/(2(√2)))∫((x−1)/(x^2 +(√2)x+1))dx−(1/(2(√2)))∫((x−2(√(2−))1)/(x^2 −(√2)x+1))dx=  I=∫((x−1)/(x^2 +(√2)x+1))dx=(1/2)∫((d(x^2 +(√2)x+1))/(x^2 +(√2)x+1))dx+(1/2)∫((−(√2)−2)/(x^2 +(√2)x+1))dx  =(1/2)∫((d(x^2 +(√2)x+1))/(x^2 +(√2)x+1))dx−((2+(√2))/2)∫(dx/((x+((√2)/2))^2 +((1/(√2)))^2 ))  =(1/2)ln(x^2 +(√2)x+1)−((2+(√2))/2)[((√2)x+1)arctan((√2)x+1)]  J=∫((x−2(√2)−1)/(x^2 −(√2)x+1))dx=(1/2)∫((d(x^2 −(√2)x+1))/(x^2 −(√2)x+1))+(1/2)∫((−3(√2)−2)/(x^2 −(√2)x+1))dx  =(1/2)ln(x^2 −(√2)x+1)−((3(√2)+2)/2)[((√2)x−1)arctan((√2)x−1)  From that F(x)= ∫(dx/(x^4 +1))=(1/(4(√2)))ln(x^2 +(√2)x+1)−((2+(√2))/(4(√2)))[((√2)x+1)arctan((√2)x+1)]  −(1/(4(√2)))ln(x^2 −(√2)x+1)+((3(√2)+2)/(4(√2)))[((√2)x−1)arctan((√2)x−1)+C  F(x)=(1/(4(√2)))ln((x^2 +(√2)x+1)/(x^2 −(√2)x+1))−(((√2)+1)/4)[((√2)x+1)arctan((√2)x+1)]+((3+(√2))/4)[((√2)x−1)arctan((√2)x−1)]+C

Wehavex4+1=(x2+1)22x2=(x2+2x+1)(x22x+1)Hence,1x4+1=ax+bx2+2x+1+cx+dx22x+11=(a+c)x3+[b+d+2(ca)]x2+[2(cb)+a+c]x+b+d{a+c=0b+d=1{b+d+2(ca)=02(cb)+a+c=0Deducea=122,b=c=122,d=1+122.hendxx4+1=122x1x2+2x+1dx122x221x22x+1dx=I=x1x2+2x+1dx=12d(x2+2x+1)x2+2x+1dx+1222x2+2x+1dx=12d(x2+2x+1)x2+2x+1dx2+22dx(x+22)2+(12)2=12ln(x2+2x+1)2+22[(2x+1)arctan(2x+1)]J=x221x22x+1dx=12d(x22x+1)x22x+1+12322x22x+1dx=12ln(x22x+1)32+22[(2x1)arctan(2x1)FromthatF(x)=dxx4+1=142ln(x2+2x+1)2+242[(2x+1)arctan(2x+1)]142ln(x22x+1)+32+242[(2x1)arctan(2x1)+CF(x)=142lnx2+2x+1x22x+12+14[(2x+1)arctan(2x+1)]+3+24[(2x1)arctan(2x1)]+C

Answered by mathmax by abdo last updated on 31/May/20

∫  (dx/(x^4  +1)) =∫   ((1/x^2 )/(x^2  +(1/x^2 )))dx =(1/2)∫  ((1+(1/x^2 ) −(1−(1/x^2 )))/(x^2  +(1/x^2 )))dx  =(1/2) ∫  ((1+(1/x^2 ))/((x−(1/x))^2 +2))dx(→u=x−(1/x)) −(1/2) ∫  ((1−(1/x^2 ))/((x+(1/x))^2 −2))  (→v=x+(1/x))  =(1/2) ∫  (du/(u^2  +2))−(1/2)∫  (dv/(v^2 −2))  but  ∫  (du/(u^2  +2)) =_(u=(√2)z)  ∫  (((√2)dz)/(2(1+z^2 ))) =(1/(√2)) arctan(z) +c_0 =(1/(√2)) arctan((u/(√2))) +c_0   =(1/(√2))arctan((1/(√2))(x−(1/x)))+c_0   ∫ (dv/(v^2 −2))dv =∫  (dv/((v−(√2))(v+(√2)))) =(1/(2(√2)))∫((1/(v−(√2)))−(1/(v+(√2))))  =(1/(2(√2)))ln∣((v−(√2))/(v+(√2)))∣ +c_1 =(1/(2(√2)))ln∣((x+(1/x)−(√2))/(x+(1/x)+(√2)))∣ +c_1  ⇒  ∫  (dx/(x^4  +1)) =(1/(2(√2))) arctan((1/(√2))(x−(1/x)))−(1/(4(√2)))ln∣((x+(1/x)−(√2))/(x+(1/x)+(√2)))∣ +C

dxx4+1=1x2x2+1x2dx=121+1x2(11x2)x2+1x2dx=121+1x2(x1x)2+2dx(u=x1x)1211x2(x+1x)22(v=x+1x)=12duu2+212dvv22butduu2+2=u=2z2dz2(1+z2)=12arctan(z)+c0=12arctan(u2)+c0=12arctan(12(x1x))+c0dvv22dv=dv(v2)(v+2)=122(1v21v+2)=122lnv2v+2+c1=122lnx+1x2x+1x+2+c1dxx4+1=122arctan(12(x1x))142lnx+1x2x+1x+2+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com