All Questions Topic List
Trigonometry Questions
Previous in All Question Next in All Question
Previous in Trigonometry Next in Trigonometry
Question Number 96282 by 675480065 last updated on 31/May/20
Answered by bemath last updated on 31/May/20
lookqn94383
Answered by 1549442205 last updated on 31/May/20
Wehavex4+1=(x2+1)2−2x2=(x2+2x+1)(x2−2x+1)Hence,1x4+1=ax+bx2+2x+1+cx+dx2−2x+1⇔1=(a+c)x3+[b+d+2(c−a)]x2+[2(c−b)+a+c]x+b+d{a+c=0b+d=1{b+d+2(c−a)=02(c−b)+a+c=0Deducea=122,b=c=−122,d=1+122.hen∫dxx4+1=122∫x−1x2+2x+1dx−122∫x−22−1x2−2x+1dx=I=∫x−1x2+2x+1dx=12∫d(x2+2x+1)x2+2x+1dx+12∫−2−2x2+2x+1dx=12∫d(x2+2x+1)x2+2x+1dx−2+22∫dx(x+22)2+(12)2=12ln(x2+2x+1)−2+22[(2x+1)arctan(2x+1)]J=∫x−22−1x2−2x+1dx=12∫d(x2−2x+1)x2−2x+1+12∫−32−2x2−2x+1dx=12ln(x2−2x+1)−32+22[(2x−1)arctan(2x−1)FromthatF(x)=∫dxx4+1=142ln(x2+2x+1)−2+242[(2x+1)arctan(2x+1)]−142ln(x2−2x+1)+32+242[(2x−1)arctan(2x−1)+CF(x)=142lnx2+2x+1x2−2x+1−2+14[(2x+1)arctan(2x+1)]+3+24[(2x−1)arctan(2x−1)]+C
Answered by mathmax by abdo last updated on 31/May/20
∫dxx4+1=∫1x2x2+1x2dx=12∫1+1x2−(1−1x2)x2+1x2dx=12∫1+1x2(x−1x)2+2dx(→u=x−1x)−12∫1−1x2(x+1x)2−2(→v=x+1x)=12∫duu2+2−12∫dvv2−2but∫duu2+2=u=2z∫2dz2(1+z2)=12arctan(z)+c0=12arctan(u2)+c0=12arctan(12(x−1x))+c0∫dvv2−2dv=∫dv(v−2)(v+2)=122∫(1v−2−1v+2)=122ln∣v−2v+2∣+c1=122ln∣x+1x−2x+1x+2∣+c1⇒∫dxx4+1=122arctan(12(x−1x))−142ln∣x+1x−2x+1x+2∣+C
Terms of Service
Privacy Policy
Contact: info@tinkutara.com