Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 96319 by  M±th+et+s last updated on 31/May/20

lim_(x→0) ((((1+x)^(1/x) )/e))^(1/x)

limx0((1+x)1xe)1x

Answered by abdomathmax last updated on 31/May/20

f(x)=((((1+x)^(1/x) )/e))^(1/x)  ⇒ln(f(x))=(1/x)ln((((1+x)^(1/x) )/e))  =(1/x)( ln(1+x)^(1/x) −1)  =(1/x)((1/x)ln(1+x)−1) =((ln(1+x)−x)/x^2 )  hodpiral →lim_(x→0)    ((ln(1+x)−x)/x^2 )  =lim_(x→0)      (((1/(1+x))−1)/(2x)) =lim_(x→0)       ((−1)/(2(1+x^2 ))) =−(1/2) ⇒  ln(f(x))→−(1/2) ⇒f(x)→e^(−(1/2))  =(1/(√e))

f(x)=((1+x)1xe)1xln(f(x))=1xln((1+x)1xe)=1x(ln(1+x)1x1)=1x(1xln(1+x)1)=ln(1+x)xx2hodpirallimx0ln(1+x)xx2=limx011+x12x=limx012(1+x2)=12ln(f(x))12f(x)e12=1e

Commented by  M±th+et+s last updated on 31/May/20

nice work sir thank you

niceworksirthankyou

Commented by mathmax by abdo last updated on 31/May/20

you are welcome sir.

youarewelcomesir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com