Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 96330 by joki last updated on 31/May/20

Commented by prakash jain last updated on 31/May/20

area of sector AOB=(1/2)αr2  area of △AOB       Let X be mid point lf AB       AX=BX=rsin(α/2)       AB=2rsin (α/2)       OX=rcos (α/2)       area of △AOB=(1/2)AB×OX        =(1/2)2r^2 sin (α/2)cos (α/2)=(1/2)r^2 sin α  given that area of △AOB=(1/3)(sector AOB)  (1/2)r^2 sin α=(1/3)((1/2)αr^2 )  ⇒3sin α=α  hence α satisfies equation  x=3sin x

areaofsectorAOB=12αr2areaofAOBLetXbemidpointlfABAX=BX=rsinα2AB=2rsinα2OX=rcosα2areaofAOB=12AB×OX=122r2sinα2cosα2=12r2sinαgiventhatareaofAOB=13(sectorAOB)12r2sinα=13(12αr2)3sinα=αhenceαsatisfiesequationx=3sinx

Commented by prakash jain last updated on 31/May/20

(iii)  x_(n+1) =(1/2)(x_n +3sin x_n )  lim_(n→∞) x_n =β (assuming convergence)  β=(1/2)(β+3sin β)  ⇒β=3sin β  ⇒x_n  converges to solution of  equation x=3sin x

(iii)xn+1=12(xn+3sinxn)limnxn=β(assumingconvergence)β=12(β+3sinβ)β=3sinβxnconvergestosolutionofequationx=3sinx

Terms of Service

Privacy Policy

Contact: info@tinkutara.com