Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 96365 by Ar Brandon last updated on 31/May/20

Answered by  M±th+et+s last updated on 01/Jun/20

x=(1/t)   dx=−(dt/t^2 )  I=∫_∞ ^0 (((1/t^2 ).(−ln(t)).(−(dt/t^2 )))/((((1+t^2 ))/t^2 ).(((1+t)^2 )/t^2 )))  I=−∫_0 ^∞ ((ln(x))/((1+x^2 )(1+x)^2 ))dx....2  2I=∫_0 ^∞ ((ln(x)[x^2 −1])/((1+x^2 )(1+x)^2 ))dx  ∫_0 ^∞ =∫_0 ^1 +∫_1 ^∞ ((ln(x)[x^2 −1])/((1+x)^2 (1+x^2 )))dx  x=(1/u)      dx=((−du)/u^2 )  ∫_1 ^0 ((−ln(u).(([1−u^2 ])/u^2 ) .((−du)/u^2 ))/((((1+u)^2 )/u^2 ).(((1+u^2 ))/u^2 )))  2I=∫_0 ^1 ((ln(u)(u^2 −1))/((1+u)^2 (u^2 +1)))du  I=∫_0 ^1 (((u−1)ln(u))/((u+1)(u^2 +1)))du  I=∫_0 ^1 ln(u)[(u/(u^2 +1))−(1/(u+1))]du  I=∫_0 ^1 ((uln(u))/(u^2 +1))du−∫_0 ^1 ((ln(u))/(u+1))du  i will continue later ......

x=1tdx=dtt2I=01t2.(ln(t)).(dtt2)(1+t2)t2.(1+t)2t2I=0ln(x)(1+x2)(1+x)2dx....22I=0ln(x)[x21](1+x2)(1+x)2dx0=01+1ln(x)[x21](1+x)2(1+x2)dxx=1udx=duu210ln(u).[1u2]u2.duu2(1+u)2u2.(1+u2)u22I=01ln(u)(u21)(1+u)2(u2+1)duI=01(u1)ln(u)(u+1)(u2+1)duI=01ln(u)[uu2+11u+1]duI=01uln(u)u2+1du01ln(u)u+1duiwillcontinuelater......

Answered by  M±th+et+s last updated on 01/Jun/20

I_1 =∫_0 ^1 ((uln(u))/(u^2 +1))du=∫_0 ^1 ln(u) d((1/2)ln∣u^2 +1∣)  =[(1/2)ln(u)ln(u^2 +1)]_0 ^1 −(1/2)∫_0 ^1 ((ln(1+u^2 ))/u)du  =−(1/2)∫_0 ^1 Σ_(n=1) ^∞ (((−1)^(n+1) )/n).u^(2n−1) du  =−(1/2)Σ_(n=1) ^∞ (((−1)^(n+1) )/n)∫_0 ^1 u^(2n−1) du  =−(1/4)Σ_(n=1) ^∞ (((−1)^(n+1) )/n^2 )=((−π^2 )/(48))  I_2 =∫_0 ^1 ((ln(u))/(1+u))du=−(1/2)((π^2 /6))=((−π^2 )/(12))  I=I_1 −I_2   I=−(π^2 /(48))+(π^2 /(12))=(π^2 /(16))    hence proved

I1=01uln(u)u2+1du=01ln(u)d(12lnu2+1)=[12ln(u)ln(u2+1)]011201ln(1+u2)udu=1201n=1(1)n+1n.u2n1du=12n=1(1)n+1n01u2n1du=14n=1(1)n+1n2=π248I2=01ln(u)1+udu=12(π26)=π212I=I1I2I=π248+π212=π216henceproved

Terms of Service

Privacy Policy

Contact: info@tinkutara.com