All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 96365 by Ar Brandon last updated on 31/May/20
Answered by M±th+et+s last updated on 01/Jun/20
x=1tdx=−dtt2I=∫∞01t2.(−ln(t)).(−dtt2)(1+t2)t2.(1+t)2t2I=−∫0∞ln(x)(1+x2)(1+x)2dx....22I=∫0∞ln(x)[x2−1](1+x2)(1+x)2dx∫0∞=∫01+∫1∞ln(x)[x2−1](1+x)2(1+x2)dxx=1udx=−duu2∫10−ln(u).[1−u2]u2.−duu2(1+u)2u2.(1+u2)u22I=∫01ln(u)(u2−1)(1+u)2(u2+1)duI=∫01(u−1)ln(u)(u+1)(u2+1)duI=∫01ln(u)[uu2+1−1u+1]duI=∫01uln(u)u2+1du−∫01ln(u)u+1duiwillcontinuelater......
I1=∫01uln(u)u2+1du=∫01ln(u)d(12ln∣u2+1∣)=[12ln(u)ln(u2+1)]01−12∫01ln(1+u2)udu=−12∫01∑∞n=1(−1)n+1n.u2n−1du=−12∑∞n=1(−1)n+1n∫01u2n−1du=−14∑∞n=1(−1)n+1n2=−π248I2=∫01ln(u)1+udu=−12(π26)=−π212I=I1−I2I=−π248+π212=π216henceproved
Terms of Service
Privacy Policy
Contact: info@tinkutara.com