All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 96373 by mathmax by abdo last updated on 01/Jun/20
1.find∫1+∞dxx2−iand∫1+∞dxx2+i(i=−1)2.findthevalueof∫1+∞dxx4+1
Answered by Sourav mridha last updated on 01/Jun/20
letI=∫1+∞dxx2−iandJ=∫1+∞dxx2+inow,I+J=∫1+∞2x2x4+1dx.....(i)=∫1+∞x2+1x4+1dx+∫1∞x2−1x4+1dx........(I1)..........(I2)=∫1+∞d(x−1x)(x−1x)2+(2)2+∫1+∞d(x+1x)(x+1x)2−(2)2=12[tan−1(x−1x2)]1+∞+122[ln(x+1x−2x+1x+2)]1+∞=π22−122ln(3−2)nowI−J=12i∫1+∞dxx4+1......(ii)=14i[∫1+∞x2+1x4+1dx−∫1+∞x2−1x4+1dx]=14i[I1−I2]=−i4[π22+122ln(3−2)]now(i)+(ii)I=[π42−142ln(3−2)]−i[π162+1162ln(3−2)]and(i)−(ii)J=I∗=complexconjugateofI.nowfrom(ii)...∫1+∞dxx4+1=2i(I−J)=[π42+142ln(3−2)].veryniceproblem...it′sreallyinteresting.
Commented by abdomathmax last updated on 01/Jun/20
thankssir
Answered by abdomathmax last updated on 01/Jun/20
1.∫1+∞dxx2−i=∫1+∞dx(x−i)(x+i)=12i∫1+∞(1x−i−1x+i)dx=12i[ln(x−ix+i)]1+∞=12i(−ln(1−i1+i))=12i(ln(1+i)−ln(1−i))but1+i=1+eiπ4=1+12+i2=(1+12)2+12×eiarctan(12(1+12)=32+2+12eiarctan(11+2)=2+2eiarctan(11+2)⇒ln(1+i)=12ln(2+2)+iarctan(11+2)ln(1−i)=conj(..)=12ln(2+2)−iarctan(11+2)⇒12i(ln(1+i)−ln(1−i))=12i{2iarctan(11+2)}=iarctan(2−1)=i(π8)=π8eiπ4∫1+∞dxx2+i=conj(∫1+∞dxx2−i)=π8e−iπ42.∫1+∞dxx4+1=∫1+∞dx(x2−i)(x2+i)=12i∫1+∞(1x2−i−1x2+i)dx=12i(π8eiπ4−π8e−iπ4)=π8sin(π4)=π8×22=π216
Terms of Service
Privacy Policy
Contact: info@tinkutara.com