Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 96373 by mathmax by abdo last updated on 01/Jun/20

1. find ∫_1 ^(+∞)  (dx/(x^2 −i))  and ∫_1 ^(+∞)  (dx/(x^2  +i))    (i=(√(−1)))  2. find the value of  ∫_1 ^(+∞)  (dx/(x^4  +1))

1.find1+dxx2iand1+dxx2+i(i=1)2.findthevalueof1+dxx4+1

Answered by Sourav mridha last updated on 01/Jun/20

let I=∫_1 ^(+∞) (dx/(x^2 −i)) and J=∫_1 ^(+∞) (dx/(x^2 +i))   now, I+J=∫_1 ^(+∞) ((2x^2 )/(x^4 +1))dx.....(i)      =∫_1 ^(+∞) ((x^2 +1)/(x^4 +1))dx +∫_1 ^∞ ((x^2 −1)/(x^4 +1))dx            ........(I_1 )           ..........(I_2 )  =∫_(1 ) ^(+∞) ((d(x−(1/x)))/((x−(1/x))^2 +((√2))^2 )) +∫_1 ^(+∞) ((d(x+(1/x)))/((x+(1/x))^2 −((√2))^2 ))  =(1/(√2))[tan^(−1) (((x−(1/x))/(√2)))]_1 ^(+∞) +(1/(2(√2)))[ln(((x+(1/x) −(√2))/(x+(1/x)+(√2))))]_1 ^(+∞)   =(𝛑/(2(√2)))−(1/(2(√2)))ln(3−(√2))  now I−J=(1/(2i))∫_1 ^(+∞) (dx/(x^4 +1)) ......(ii)   =(1/(4i))[∫_1 ^(+∞) ((x^2 +1)/(x^4 +1))dx−∫_1 ^(+∞) ((x^2 −1)/(x^4 +1))dx]  =(1/(4i))[I_1 −I_2 ]=−(i/4)[(𝛑/(2(√2)))+(1/(2(√2)))ln(3−(√2))]  now (i)+(ii)  I=[(𝛑/(4(√2)))−(1/(4(√2)))ln(3−(√2))]−i[(𝛑/(16(√2)))+(1/(16(√2)))ln(3−(√2))]  and (i)−(ii)  J=I^∗ =complex conjugate of I.  now from (ii)...    ∫_1 ^(+∞) (dx/(x^4 +1))=2i(I−J)                       =[(𝛑/(4(√2)))+(1/(4(√2)))ln(3−(√2))].  very nice problem...it′s really  interesting.

letI=1+dxx2iandJ=1+dxx2+inow,I+J=1+2x2x4+1dx.....(i)=1+x2+1x4+1dx+1x21x4+1dx........(I1)..........(I2)=1+d(x1x)(x1x)2+(2)2+1+d(x+1x)(x+1x)2(2)2=12[tan1(x1x2)]1++122[ln(x+1x2x+1x+2)]1+=π22122ln(32)nowIJ=12i1+dxx4+1......(ii)=14i[1+x2+1x4+1dx1+x21x4+1dx]=14i[I1I2]=i4[π22+122ln(32)]now(i)+(ii)I=[π42142ln(32)]i[π162+1162ln(32)]and(i)(ii)J=I=complexconjugateofI.nowfrom(ii)...1+dxx4+1=2i(IJ)=[π42+142ln(32)].veryniceproblem...itsreallyinteresting.

Commented by abdomathmax last updated on 01/Jun/20

thanks sir

thankssir

Answered by abdomathmax last updated on 01/Jun/20

1. ∫_1 ^(+∞)  (dx/(x^2 −i)) =∫_1 ^(+∞)  (dx/((x−(√i))(x+(√i))))  =(1/(2(√i)))∫_1 ^(+∞)  ((1/(x−(√i)))−(1/(x+(√i))))dx  =(1/(2(√i)))[ln(((x−(√i))/(x+(√i))))]_1 ^(+∞)  =(1/(2(√i)))(−ln(((1−(√i))/(1+(√i)))))  =(1/(2(√i)))( ln(1+(√i))−ln(1−(√i)))  but  1+(√i)=1+e^((iπ)/4)  =1+(1/(√2))+(i/(√2)) =(√((1+(1/(√2)))^2 +(1/2)))×  e^(iarctan((1/((√2)(1+(1/(√2))))))  =(√((3/2)+(√2)+(1/2)))e^(iarctan((1/(1+(√2)))))   =(√(2+(√2))) e^(iarctan((1/(1+(√2)))))  ⇒  ln(1+(√i))=(1/2)ln(2+(√2))+iarctan((1/(1+(√2))))  ln(1−(√i)) =conj(..)=(1/2)ln(2+(√2))−iarctan((1/(1+(√2))))  ⇒(1/(2(√i)))(ln(1+(√i))−ln(1−(√i)))  =(1/(2(√i))){2i arctan((1/(1+(√2))))} =(√i)arctan((√2)−1)  =(√i)((π/8)) =(π/8)e^((iπ)/4)   ∫_1 ^(+∞)   (dx/(x^2 +i)) =conj(∫_1 ^(+∞)  (dx/(x^2 −i))) =(π/8)e^(−((iπ)/4))   2.∫_1 ^(+∞)  (dx/(x^4  +1)) =∫_1 ^(+∞)  (dx/((x^2 −i)(x^2  +i)))  =(1/(2i))∫_1 ^(+∞)  ((1/(x^2 −i))−(1/(x^2  +i)))dx  =(1/(2i))((π/8)e^((iπ)/4) −(π/8)e^(−((iπ)/4)) )   =(π/8)sin((π/4)) =(π/8)×((√2)/2) =((π(√2))/(16))

1.1+dxx2i=1+dx(xi)(x+i)=12i1+(1xi1x+i)dx=12i[ln(xix+i)]1+=12i(ln(1i1+i))=12i(ln(1+i)ln(1i))but1+i=1+eiπ4=1+12+i2=(1+12)2+12×eiarctan(12(1+12)=32+2+12eiarctan(11+2)=2+2eiarctan(11+2)ln(1+i)=12ln(2+2)+iarctan(11+2)ln(1i)=conj(..)=12ln(2+2)iarctan(11+2)12i(ln(1+i)ln(1i))=12i{2iarctan(11+2)}=iarctan(21)=i(π8)=π8eiπ41+dxx2+i=conj(1+dxx2i)=π8eiπ42.1+dxx4+1=1+dx(x2i)(x2+i)=12i1+(1x2i1x2+i)dx=12i(π8eiπ4π8eiπ4)=π8sin(π4)=π8×22=π216

Terms of Service

Privacy Policy

Contact: info@tinkutara.com