Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 96377 by mathmax by abdo last updated on 01/Jun/20

if tan(x+iy)=a+ib   determine x and y interms of a and b

iftan(x+iy)=a+ibdeterminexandyintermsofaandb

Answered by mathmax by abdo last updated on 02/Jun/20

tan(x+iy) =a+ib ⇒x+iy =arctan(a+ib) we know  arctan(z) =(1/(2i))ln(((1+iz)/(1−iz))) ⇒arctan(a+ib) =(1/(2i))ln(((1+i(a+ib))/(1−i(a+ib))))  =(1/(2i))ln(((1−b+ia)/(1+b−ia)))  we have 1−b+ia =(√((1−b)^2  +a^2 ))e^(iarctan((a/(1−b))))  ⇒  ln(1−b+ia) =(1/2)ln{(1−b)^2  +a^2 } +iarctan((a/(1−b))) also  1+b−ia =(√((1+b)^2  +a^2 ))e^(−iarctan((a/(1+b))))  ⇒ln(1+b−ia) =(1/2)ln{(1+b)^2  +a^2 }  −iarctan((a/(1+b))) ⇒2i arctan(a+ib)  (1/2)ln{(1−b)^2  +a^2 }+iarctan((a/(1−b)))−(1/2)ln{(1+b)^2  +a^2 }+iarctan((a/(1+b)))  =(1/2)ln((((1−b)^2  +a^2 )/((1+b)^2  +a^2 ))) +i{ arctan((a/(1−b)))+arctan((a/(1+b))) ⇒  arctan(a+ib) =(1/(4i))ln((((1−b)^2  +a^2 )/((1+b)^2  +a^2 )))+(1/2){arctan((a/(1−b)))+arctan((a/(1+b)))}=x+iy  ⇒ { ((x =(1/2){ arctan((a/(1−b))) +arctan((a/(1+b)))})),((y =(1/4)ln(((a^2  +b^2  +2b+1)/(a^2  +b^2 −2b+1))))) :}

tan(x+iy)=a+ibx+iy=arctan(a+ib)weknowarctan(z)=12iln(1+iz1iz)arctan(a+ib)=12iln(1+i(a+ib)1i(a+ib))=12iln(1b+ia1+bia)wehave1b+ia=(1b)2+a2eiarctan(a1b)ln(1b+ia)=12ln{(1b)2+a2}+iarctan(a1b)also1+bia=(1+b)2+a2eiarctan(a1+b)ln(1+bia)=12ln{(1+b)2+a2}iarctan(a1+b)2iarctan(a+ib)12ln{(1b)2+a2}+iarctan(a1b)12ln{(1+b)2+a2}+iarctan(a1+b)=12ln((1b)2+a2(1+b)2+a2)+i{arctan(a1b)+arctan(a1+b)arctan(a+ib)=14iln((1b)2+a2(1+b)2+a2)+12{arctan(a1b)+arctan(a1+b)}=x+iy{x=12{arctan(a1b)+arctan(a1+b)}y=14ln(a2+b2+2b+1a2+b22b+1)

Commented by Ar Brandon last updated on 02/Jun/20

Vous avez des choses tellement intéressantes monsieur Mathmax.��

Terms of Service

Privacy Policy

Contact: info@tinkutara.com