All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 96489 by Ar Brandon last updated on 01/Jun/20
Given{u0=aun+1=a+12(1−1bn)una>0b>1 a∖Calculateu1,u2,andu3. b∖Showthatthesequence(un)n∈Nisincreasing. c∖Deducethat(un)n∈Nconvergesanddetermineitslimit.
Answered by Rio Michael last updated on 01/Jun/20
(a)u0=a⇒u1=a+12(1−1b0)u0 ⇒u1=a u2=a+12(1+1b)a=a[1+12(1−1b)] u3=[a+12(1−1b2)]{a[1+12(1−1b)]} (b)n∈Nanda>0,b>1 a[1+12(1−1b)]>afora>0andb>1 [a+12(1−1b2)]{a[1+12(1−1b)]}>a[1+12(1−1b)] ⇒thesequenceisincreasingforn∈N. (c)12(1−1bn)un<1∀n∈N⇒unisconvergent
Commented byAr Brandon last updated on 01/Jun/20
Wow, so fast ! Thank you ��
Terms of Service
Privacy Policy
Contact: info@tinkutara.com