Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 96495 by abdomathmax last updated on 01/Jun/20

calculateI = ∫_0 ^(π/2) ln(cosx +sinx)dx  and J =∫_0 ^(π/2) ln(cosx−sinx)dx

calculateI=0π2ln(cosx+sinx)dxandJ=0π2ln(cosxsinx)dx

Answered by Sourav mridha last updated on 02/Jun/20

J−I=∫_0 ^(𝛑/2) ln[tan((𝛑/4)−x)]dx...(i)  and also J−I=∫_0 ^(𝛑/2) ln[cot((𝛑/4)−x)]dx                                .........(ii)  (i)+(ii)we get..J−I=0,J=I....(g)  now J+I=∫_0 ^(𝛑/2) ln(cos2x)dx...(v)  now 2x=t,then  2J=(1/2)∫_0 ^𝛑 ln(cost)dt we can also  write this as −−  2J=∫_0 ^(𝛑/2) ln(cost)dt....(a)  so, 2J=∫_0 ^(𝛑/2) ln(sint)dt....(b)  (a)+(b) 4J=(𝛑/2)ln((1/2))+∫_0 ^(𝛑/2) ln(sin(2t))dt  by apply: the same approch like   eq^n  (v)we get,∫_0 ^(π/2) ln(sin2t)dt=2J   so,4J=(𝛑/2)ln((1/2))+2J  so ,2J=(𝛑/2)ln((1/2))  now from (g) I=J=(𝛑/4)ln((1/2))

JI=0π2ln[tan(π4x)]dx...(i)andalsoJI=0π2ln[cot(π4x)]dx.........(ii)(i)+(ii)weget..JI=0,J=I....(g)nowJ+I=0π2ln(cos2x)dx...(v)now2x=t,then2J=120πln(cost)dtwecanalsowritethisas2J=0π2ln(cost)dt....(a)so,2J=0π2ln(sint)dt....(b)(a)+(b)4J=π2ln(12)+0π2ln(sin(2t))dtbyapply:thesameapprochlikeeqn(v)weget,0π2ln(sin2t)dt=2Jso,4J=π2ln(12)+2Jso,2J=π2ln(12)nowfrom(g)I=J=π4ln(12)

Commented by abdomathmax last updated on 02/Jun/20

thanks sir.

thankssir.

Commented by Sourav mridha last updated on 02/Jun/20

welcome....

Answered by mathmax by abdo last updated on 02/Jun/20

let f(a) =∫_0 ^(π/2)  ln(cosx +asinx)dx   we have f^′ (a) =∫_0 ^(π/2)  ((sinx)/(cosx +asinx))dx  =∫_0 ^(π/2)  (dx/(a +(1/(tanx)))) =_(tanx =u)      ∫_0 ^∞    (du/((1+u^2 )(a+(1/u)))) =∫_0 ^∞    ((udu)/((au+1)(u^2  +1)))  let decompose F(u) =(u/((au+1)(u^2  +1))) ⇒F(u) =(α/(au+1)) +((βu +λ)/(u^2  +1))  α =((−1)/(a((1/a^2 )+1))) =((−a^2 )/(a(1+a^2 ))) =((−a)/(1+a^2 ))  lim_(u→+∞)  uF(u) =0 =(α/a) +β ⇒β =−(α/a) =(1/(1+a^2 ))  F(0) =0 =α +λ ⇒λ =(a/(1+a^2 )) ⇒F(u) =−(a/((1+a^2 )(au+1))) +(1/(1+a^2 ))×((u+a)/(u^2  +1))  ⇒∫_0 ^∞  F(u)du =−(a/(1+a^2 ))∫_0 ^∞  (du/(au+1)) +(1/(2(1+a^2 )))∫_0 ^∞  ((2u)/(u^2  +1)) +(a/(1+a^2 )) ∫_0 ^∞  (du/(u^2  +1))  =(1/(1+a^2 ))[ln(√(u^2 +1))−ln(au+1)]_0 ^∞  +((πa)/(2(1+a^2 )))  =(1/(1+a^2 ))[ln(((√(1+u^2 ))/(au +1)))]_0 ^∞  +((πa)/(2(1+a^2 ))) =−((ln(a))/(1+a^2 )) +((πa)/(2(1+a^2 ))) ⇒  f(a) =−∫_0 ^a   ((lnt)/(1+t^2 ))dt +(π/4)ln(1+a^2 ) +c but  f(0) =c =−(π/2)ln(2) ⇒f(a) =(π/4)ln(1+a^2 )−(π/2)ln(2)−∫_0 ^a  ((lnt)/(1+t^2 ))dt  ∫_0 ^(π/2)  ln(cosx +sinx)dx =f(1) =(π/4)ln(2)−(π/2)ln(2)−∫_0 ^1  ((lnt)/(1+t^2 ))dt (→t =tanθ)  =−(π/4)ln(2)−∫_0 ^(π/2)  ln(tanθ)dθ =−(π/4)ln(2)−0 (because ∫_0 ^(π/2)  ln(cosθ)dθ=∫_0 ^(π/2) ln(sinθ)dθ)⇒  ⇒∫_0 ^(π/2)  ln(cosx −sinx)dx =−(π/4)ln(2)

letf(a)=0π2ln(cosx+asinx)dxwehavef(a)=0π2sinxcosx+asinxdx=0π2dxa+1tanx=tanx=u0du(1+u2)(a+1u)=0udu(au+1)(u2+1)letdecomposeF(u)=u(au+1)(u2+1)F(u)=αau+1+βu+λu2+1α=1a(1a2+1)=a2a(1+a2)=a1+a2limu+uF(u)=0=αa+ββ=αa=11+a2F(0)=0=α+λλ=a1+a2F(u)=a(1+a2)(au+1)+11+a2×u+au2+10F(u)du=a1+a20duau+1+12(1+a2)02uu2+1+a1+a20duu2+1=11+a2[lnu2+1ln(au+1)]0+πa2(1+a2)=11+a2[ln(1+u2au+1)]0+πa2(1+a2)=ln(a)1+a2+πa2(1+a2)f(a)=0alnt1+t2dt+π4ln(1+a2)+cbutf(0)=c=π2ln(2)f(a)=π4ln(1+a2)π2ln(2)0alnt1+t2dt0π2ln(cosx+sinx)dx=f(1)=π4ln(2)π2ln(2)01lnt1+t2dt(t=tanθ)=π4ln(2)0π2ln(tanθ)dθ=π4ln(2)0(because0π2ln(cosθ)dθ=0π2ln(sinθ)dθ)0π2ln(cosxsinx)dx=π4ln(2)

Commented by mathmax by abdo last updated on 02/Jun/20

error of typo  ∫_0 ^(π/2) ln(cosx +sinx)dx =−(π/4)ln2

erroroftypo0π2ln(cosx+sinx)dx=π4ln2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com