All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 96554 by student work last updated on 02/Jun/20
∫dxx!=?
Commented by student work last updated on 02/Jun/20
or∫xx!dx=?
Commented by MJS last updated on 03/Jun/20
Istatedthisbeforex!isdefinedforx∈NifyoumeanΓ(x)youmustsayΓ(x)
Answered by Rio Michael last updated on 03/Jun/20
recallx!=Γ(x+1)⇒∫dxx!=∫1Γ(x+1)dx=x+γx22+136(6γ2−π2)x3+148x4(2γ3−γπ2−2ψ(2)(1))+17200x5(60γ4++π4−60γ2π2−240ψγ(2)(1))+18467420x7(168γ4+42γ2π4−420γ4π4−3360γ3ψ(2)(1))−5(π6−336ψ(2)(1)(2))+336γ(5π2ψ(2)(1)−3ψ(4)(1))+18640x6(12γ5+γπ4−20γ3π2−120γ2ψ(2)(1)+20π2ψ(2)(1)−12ψ(4)(1))+...kγ=Euler−Mascheroniconstantψ(m)(z)=polygamafunctionsummarisingtheabove,weseethat∫1Γ(x+1)dx=i2π∫(∮H(−t)−(1+x)e−tdt)dx.alsopleaseverifyonwolframealphathat1Γ(x+1)=∑∞k=1ck(x+1)k,c1=1,c2=2andck=γck−1+∑k−2j=2cj(−1)j+k+1ζ(k−j)k−1ζ(z)=Reimanzetafunctionintegratingtheseriesabove∫1Γ(1+x)dx=∫(∑∞k=1ck(x+1)k)dx=∑∞k=1ck∫(x+1)kdx∫1Γ(1+x)dx=∫dxx!=∑∞k=1ck(x+1)k+1k+1+constant(A)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com