Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 96554 by student work last updated on 02/Jun/20

∫(dx/(x!))=?

dxx!=?

Commented by student work last updated on 02/Jun/20

or ∫(x/(x!))dx=?

orxx!dx=?

Commented by MJS last updated on 03/Jun/20

I stated this before  x! is defined for x∈N  if you mean Γ (x) you must say Γ (x)

Istatedthisbeforex!isdefinedforxNifyoumeanΓ(x)youmustsayΓ(x)

Answered by Rio Michael last updated on 03/Jun/20

recall x! = Γ(x +1)  ⇒ ∫(dx/(x!)) = ∫(1/(Γ(x + 1))) dx =  x + ((γx^2 )/2) + (1/(36))(6γ^2 −π^2 )x^3  + (1/(48))x^4 (2γ^3 −γπ^2 −2ψ^((2)) (1)) + (1/(7200)) x^5 (60γ^4  +  + π^4  −60γ^2 π^2 −240ψγ^((2)) (1))+ (1/(8467420))x^7 (168γ^4  + 42γ^2 π^4 −420γ^4 π^4 −3360γ^3 ψ^((2)) (1))   −5(π^6 −336ψ^((2)) (1)^((2)) ) + 336γ(5π^2 ψ^((2)) (1) −3ψ^((4)) (1)) + (1/(8640))x^6 (12γ^5  +    γπ^4 −20γ^3 π^2 −120γ^2 ψ^((2)) (1) + 20π^2 ψ^((2)) (1) −12ψ^((4)) (1)) +...k    γ = Euler−Mascheroni constant  ψ^((m)) (z) = polygama function  summarising the above, we see that    ∫(1/(Γ(x + 1)))dx = (i/(2π))∫(∮_H (−t)^(−(1 + x)) e^(−t)  dt)dx.  also please verify on wolframe alpha that    (1/(Γ(x + 1))) = Σ_(k = 1) ^∞ c_k (x + 1)^k ,   c_1  = 1 , c_2  = 2 and c_k  = ((γc_(k−1)  + Σ_(j=2) ^(k−2) c_j (−1)^(j + k +1) ζ(k−j))/(k−1))  ζ(z) = Reiman zeta function  integrating the series above   ∫(1/(Γ(1 +x))) dx = ∫(Σ_(k=1) ^∞ c_k (x + 1)^k )dx = Σ_(k=1) ^∞ c_k ∫(x + 1)^k dx    ∫(1/(Γ(1 + x)))dx = ∫(dx/(x!)) = Σ_(k=1) ^∞ ((c_k (x + 1)^(k+1) )/(k + 1)) + constant (A)

recallx!=Γ(x+1)dxx!=1Γ(x+1)dx=x+γx22+136(6γ2π2)x3+148x4(2γ3γπ22ψ(2)(1))+17200x5(60γ4++π460γ2π2240ψγ(2)(1))+18467420x7(168γ4+42γ2π4420γ4π43360γ3ψ(2)(1))5(π6336ψ(2)(1)(2))+336γ(5π2ψ(2)(1)3ψ(4)(1))+18640x6(12γ5+γπ420γ3π2120γ2ψ(2)(1)+20π2ψ(2)(1)12ψ(4)(1))+...kγ=EulerMascheroniconstantψ(m)(z)=polygamafunctionsummarisingtheabove,weseethat1Γ(x+1)dx=i2π(H(t)(1+x)etdt)dx.alsopleaseverifyonwolframealphathat1Γ(x+1)=k=1ck(x+1)k,c1=1,c2=2andck=γck1+k2j=2cj(1)j+k+1ζ(kj)k1ζ(z)=Reimanzetafunctionintegratingtheseriesabove1Γ(1+x)dx=(k=1ck(x+1)k)dx=k=1ck(x+1)kdx1Γ(1+x)dx=dxx!=k=1ck(x+1)k+1k+1+constant(A)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com