All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 96567 by bemath last updated on 02/Jun/20
Commented by john santu last updated on 02/Jun/20
sety=−1+4x−3x=43+(1+y2)2∫10ydx=∫0∞xdy=∫0∞(43+(1+y2)2)dy=122[ln(2+y(y+2)2+y(y−2)]∞0+16[tan−1(y2+13)+tan−1(y2−13)]∞0=π6
Answered by mathmax by abdo last updated on 02/Jun/20
I=∫014x−3−1dxchangement4x−3=tgive4x−3=t2⇒4x=t2+3⇒x4=1t2+3⇒x=4t2+3⇒dx=−4×(2t)(t2+3)2dt=−8t(t2+3)2dt⇒I=−∫1+∞t−1(−8t(t2+3)2)dt=8∫1∞tt−1(t2+3)2dt=t−1=u8∫0∞(1+u2)u((1+u2)2+3)2(2u)du=16∫0∞u2(1+u2)((u2+1)2+3)2du=8∫−∞+∞u2(1+u2)((u2+1)2+3)2duletφ(z)=z2(1+z2){(z2+1)2+3}2⇒φ(z)=z2(1+z2)(z2+1−i3)2(z2+1+i3)2polesofφ?z2+1−i3=z2−(−1+i3)wehave−1+i3=2(−12+i32)=2ei2π3⇒z2+1−i3=z2−2ei2π3=(z−2eiπ3)(z+2eiπ3)z2+1+i3=z2−(−1−i3)=z2−2e−i2π3=(z−2e−iπ3)(z+2e−iπ3)⇒φ(z)=z2(1+z2)(z−2eiπ3)2(z+2eiπ3)2(z−2e−iπ3)2(z+2e−iπ3)∫−∞+∞φ(z)dz=2iπ{Res(φ,2eiπ3)+Res(φ,−2e−iπ3)}Res(φ,2eiπ3)=limz→2eiπ31(2−1)!{(z−2eiπ3)2φ(z)}(1)=limz→2eiπ3{z2+z4(z+2eiπ3)2(z2+1+i3)2}(1)...becontinued....
Terms of Service
Privacy Policy
Contact: info@tinkutara.com