Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 96567 by bemath last updated on 02/Jun/20

Commented by john santu last updated on 02/Jun/20

set y = (√(−1+(√((4/x)−3))))   x = (4/(3+(1+y^2 )^2 ))  ∫_0 ^1  y dx = ∫_∞ ^0  xdy = ∫_∞ ^0  ((4/(3+(1+y^2 )^2 ))) dy  = (1/(2(√2))) [ln (((2+y(y+(√2)))/(2+y(y−(√2))))]_∞ ^0 +  (1/(√6)) [tan^(−1) (((y(√2)+1)/(√3)))+tan^(−1) (((y(√2)−1)/(√3)))]_∞ ^0   = (π/(√6))

sety=1+4x3x=43+(1+y2)210ydx=0xdy=0(43+(1+y2)2)dy=122[ln(2+y(y+2)2+y(y2)]0+16[tan1(y2+13)+tan1(y213)]0=π6

Answered by mathmax by abdo last updated on 02/Jun/20

I =∫_0 ^1 (√((√((4/x)−3))−1))dx changement (√((4/x)−3))=t give (4/x)−3 =t^(2 )  ⇒  (4/x) =t^2  +3 ⇒(x/4) =(1/(t^2  +3)) ⇒x =(4/(t^2  +3)) ⇒dx =−((4×(2t))/((t^2  +3)^2 ))dt =−((8t)/((t^2  +3)^2 ))dt ⇒  I =−∫_1 ^(+∞)  (√(t−1))(((−8t)/((t^2  +3)^2 )))dt =8 ∫_1 ^∞  ((t(√(t−1)))/((t^2  +3)^2 ))dt  =_((√(t−1))=u)     8 ∫_0 ^∞  (((1+u^2 )u)/(((1+u^2 )^2  +3)^2 ))(2u)du =16 ∫_0 ^∞  ((u^2 (1+u^2 ))/(((u^2  +1)^2  +3)^2 ))du  =8 ∫_(−∞) ^(+∞)  ((u^2 (1+u^2 ))/(((u^2  +1)^2  +3)^2 ))du let ϕ(z) =((z^2 (1+z^2 ))/({(z^2  +1)^2 +3}^2 )) ⇒  ϕ(z) =((z^2 (1+z^2 ))/((z^2  +1−i(√3))^2 (z^2 +1+i(√3))^2 ))  poles of ϕ?  z^2  +1−i(√3)=z^2 −(−1+i(√3)) we have −1+i(√3)=2(−(1/2) +((i(√3))/2)) =2e^((i2π)/3)   ⇒z^2  +1−i(√3)=z^2 −2 e^((i2π)/3)  =(z−(√2)e^((iπ)/3) )(z+(√2)e^((iπ)/3) )  z^2  +1+i(√3)=z^2 −(−1−i(√3)) =z^2 −2e^(−((i2π)/3))  =(z−(√2)e^(−((iπ)/3)) )(z+(√2)e^(−((iπ)/3)) )  ⇒ϕ(z) =((z^2 (1+z^2 ))/((z−(√2)e^((iπ)/3) )^2 (z+(√2)e^((iπ)/3) )^2 (z−(√2)e^(−((iπ)/3)) )^2 (z+(√2)e^(−((iπ)/3)) )))  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{ Res(ϕ,(√2)e^((iπ)/3) ) +Res(ϕ,−(√2)e^(−((iπ)/3)) )}  Res(ϕ,(√2)e^((iπ)/3) ) =lim_(z→(√2)e^((iπ)/3) )   (1/((2−1)!)) {(z−(√2)e^((iπ)/3) )^2 ϕ(z)}^((1))   =lim_(z→(√2)e^((iπ)/3) )    {((z^2  +z^4 )/((z+(√2)e^((iπ)/3) )^2 (z^2  +1+i(√3))^2 ))}^((1))  ...be continued....

I=014x31dxchangement4x3=tgive4x3=t24x=t2+3x4=1t2+3x=4t2+3dx=4×(2t)(t2+3)2dt=8t(t2+3)2dtI=1+t1(8t(t2+3)2)dt=81tt1(t2+3)2dt=t1=u80(1+u2)u((1+u2)2+3)2(2u)du=160u2(1+u2)((u2+1)2+3)2du=8+u2(1+u2)((u2+1)2+3)2duletφ(z)=z2(1+z2){(z2+1)2+3}2φ(z)=z2(1+z2)(z2+1i3)2(z2+1+i3)2polesofφ?z2+1i3=z2(1+i3)wehave1+i3=2(12+i32)=2ei2π3z2+1i3=z22ei2π3=(z2eiπ3)(z+2eiπ3)z2+1+i3=z2(1i3)=z22ei2π3=(z2eiπ3)(z+2eiπ3)φ(z)=z2(1+z2)(z2eiπ3)2(z+2eiπ3)2(z2eiπ3)2(z+2eiπ3)+φ(z)dz=2iπ{Res(φ,2eiπ3)+Res(φ,2eiπ3)}Res(φ,2eiπ3)=limz2eiπ31(21)!{(z2eiπ3)2φ(z)}(1)=limz2eiπ3{z2+z4(z+2eiπ3)2(z2+1+i3)2}(1)...becontinued....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com