Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 96571 by mathmax by abdo last updated on 02/Jun/20

solve y^(′′) −2y^′  +y =(x+1)^2  e^(−x)  with y(0)=−1 ,y^′ (0)=0 ,y^((2)) (0) =1

solvey2y+y=(x+1)2exwithy(0)=1,y(0)=0,y(2)(0)=1

Answered by mathmax by abdo last updated on 03/Jun/20

let solve by laplace transform   (e)⇒L(y^(′′) )−2L(y^′ )+L(y) =L((x+1)^2  e^(−x) ) ⇒  x^2  L(y)−x y(0)−y^′ (0)−2(xL(y)−y(o))+L(y) =L{(x+1)^2  e^(−x) } ⇒  (x^2 −2x+1)L(y)+x−2 =L{(x+1)^2  e^(−x) } ⇒  (x^2 −2x+1)L(y)=−x+2 +L{(x+1)^2  e^(−x) }  L{(x+1)^2  e^(−x) } =∫_0 ^∞  (t+1)^2  e^(−t)  e^(−xt)  dt =∫_0 ^∞  (t+1)^2  e^(−(x+1)t)  dt  =_(by parts)     [(((t+1)^2 )/(−(x+1))) e^(−(x+1)t) ]_0 ^∞  −∫_0 ^∞  2(t+1)×(1/(−(x+1)))e^(−(x+1)t)  dt  =(1/(x+1)) +(2/(x+1))∫_0 ^∞   (t+1)e^(−(x+1)t) [dt  =(1/(x+1)) +(2/(x+1)){  [((t+1)/(−(x+1)))e^(−(x+1)t) ]_0 ^∞  −∫_0 ^∞  (1/(−(x+1)))e^(−(x+1)t) dt}  =(1/(x+1)) +(2/(x+1)){ (1/(x+1)) +(1/(x+1))[(1/(−(x+1)))e^(−(x+1)t) ]_0 ^∞ }  =(1/(x+1)) +(2/((x+1)^2 )){ 1+(1/(x+1))} =(1/(x+1)) +(2/((x+1)^2 )) +(2/((x+1)^3 ))  (e)⇒(x^2 −2x+1)L(y) =−x+2 +(1/(x+1)) +(2/((x+1)^2 )) +(2/((x+1)^3 )) ⇒  L(y) =((−x+2)/(x^2 −2x+1)) +(1/((x+1)(x^2 −2x+1))) +(2/((x+1)^2 (x^2 −2x+1))) +(2/((x+1)^3 (x^2 −2x+1)))  =((−x+2)/((x−1)^2 )) +(1/((x+1)(x−1)^2 )) +(2/((x+1)^2 (x−1)^2 )) +(2/((x+1)^3 (x−1)^2 )) ⇒  y =L^(−1) (((−x+2)/((x−1)^2 )))+L^(−1) ((1/((x+1)(x−1)^2 )))+L^(−1) ((2/((x+1)^( (x−1)^2 ))) +L^(−1) ((2/((x+1)^3 (x−1)^2 )))  ...be continued...

letsolvebylaplacetransform(e)L(y)2L(y)+L(y)=L((x+1)2ex)x2L(y)xy(0)y(0)2(xL(y)y(o))+L(y)=L{(x+1)2ex}(x22x+1)L(y)+x2=L{(x+1)2ex}(x22x+1)L(y)=x+2+L{(x+1)2ex}L{(x+1)2ex}=0(t+1)2etextdt=0(t+1)2e(x+1)tdt=byparts[(t+1)2(x+1)e(x+1)t]002(t+1)×1(x+1)e(x+1)tdt=1x+1+2x+10(t+1)e(x+1)t[dt=1x+1+2x+1{[t+1(x+1)e(x+1)t]001(x+1)e(x+1)tdt}=1x+1+2x+1{1x+1+1x+1[1(x+1)e(x+1)t]0}=1x+1+2(x+1)2{1+1x+1}=1x+1+2(x+1)2+2(x+1)3(e)(x22x+1)L(y)=x+2+1x+1+2(x+1)2+2(x+1)3L(y)=x+2x22x+1+1(x+1)(x22x+1)+2(x+1)2(x22x+1)+2(x+1)3(x22x+1)=x+2(x1)2+1(x+1)(x1)2+2(x+1)2(x1)2+2(x+1)3(x1)2y=L1(x+2(x1)2)+L1(1(x+1)(x1)2)+L1(2(x+1)((x1)2)+L1(2(x+1)3(x1)2)...becontinued...

Answered by mathmax by abdo last updated on 03/Jun/20

wronkien method  (he)→y^((2)) −2y^((1))  +y =0→r^2 −2r +1 =0 ⇒(r−1)^2  =0 ⇒  r=1 ⇒y_h =(ax+b)e^x  =axe^x  +be^x  =au_1  +bu_2     ,u_1 =xe^x  and u_2 =e^x   W(u_1  ,u_2 ) = determinant (((u_1          u_2 )),((u_1 ^′          u_2 ^′ )))= determinant (((xe^x             e^x )),(((x+1)e^x    e^x )))=xe^(2x) −(x+1)e^(2x)  =−e^(2x)   W_1 = determinant (((0                        e^x )),(((x+1)^2 e^(−x)     e^x )))=−(x+1)^2   W_2 = determinant (((xe^x                         0)),(((x+1)e^x    (x+1)^2 e^(−x) )))=x(x+1)^2   v_1 =∫ (w_1 /W)dx =∫  ((−(x+1)^2 )/(−e^(2x) )) dx =∫ (x+1)^2  e^(−2x)  dx  =−(1/2)(x+1)^2  e^(−2x) −∫ 2(x+1)×(−(1/2))e^(−2x)  dx  =−(1/2)(x+1)^2  e^(−2x)  +∫ (x+1)e^(−2x)  dx  =−(1/2)(x+1)^2  −((x+1)/2) e^(−2x) +(1/2)∫  e^(−2x)  dx  =−(((x+1)^2 )/2)−(((x+1)e^(−2x) )/2) −(1/4) e^(−2x)   v_2 =∫ ((w2)/W)dx =∫  ((x(x+1)^2 )/(−e^(2x) ))dx =−∫ x(x^2  +2x+1)e^(−2x)  dx  −v_2 =∫  (x^3  +2x^2  +x)e^(−2x)  dx  =−(1/2)(x^3  +2x^2  +x)e^(−2x)  +(1/2)∫ (3x^2  +4x+1)e^(−2x) dx  =−(1/2)(x^3  +2x^2 +x)e^(−2x)  +(1/2)(  −(1/2)(3x^2  +4x+1)e^(−2x) +(1/2)∫(6x+4)e^(−2x) dx)  =−(1/2)(x^3  +2x^2  +x)e^(−2x) −(1/4)(3x^2  +4x+1)e^(−2x) +(1/2)∫ (3x+2)e^(−2x)  dx but  ∫ (3x+2)e^(−2x)  dx =−(1/2)(3x+2)e^(−2x)  +(3/2)∫  e^(−2x)  dx  =−(1/2)(3x+2)e^(−2x)  −(3/4)e^(−2x)  ⇒  v_2 =((1/2)(x^3  +2x^2  +x) +(1/4)(3x^2  +4x+1)+(1/2)(3x+2)+(3/4))e^(−2x)  =....  y_p =u_1 v_1  +u_2 v_(2  )   and general solution is  y =y_h  +y_p ...be continued....

wronkienmethod(he)y(2)2y(1)+y=0r22r+1=0(r1)2=0r=1yh=(ax+b)ex=axex+bex=au1+bu2,u1=xexandu2=exW(u1,u2)=|u1u2u1u2|=|xexex(x+1)exex|=xe2x(x+1)e2x=e2xW1=|0ex(x+1)2exex|=(x+1)2W2=|xex0(x+1)ex(x+1)2ex|=x(x+1)2v1=w1Wdx=(x+1)2e2xdx=(x+1)2e2xdx=12(x+1)2e2x2(x+1)×(12)e2xdx=12(x+1)2e2x+(x+1)e2xdx=12(x+1)2x+12e2x+12e2xdx=(x+1)22(x+1)e2x214e2xv2=w2Wdx=x(x+1)2e2xdx=x(x2+2x+1)e2xdxv2=(x3+2x2+x)e2xdx=12(x3+2x2+x)e2x+12(3x2+4x+1)e2xdx=12(x3+2x2+x)e2x+12(12(3x2+4x+1)e2x+12(6x+4)e2xdx)=12(x3+2x2+x)e2x14(3x2+4x+1)e2x+12(3x+2)e2xdxbut(3x+2)e2xdx=12(3x+2)e2x+32e2xdx=12(3x+2)e2x34e2xv2=(12(x3+2x2+x)+14(3x2+4x+1)+12(3x+2)+34)e2x=....yp=u1v1+u2v2andgeneralsolutionisy=yh+yp...becontinued....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com