Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 96586 by  M±th+et+s last updated on 02/Jun/20

find the minimum value of                        f(x)=x^x   for x∈R^+

findtheminimumvalueoff(x)=xxforxR+

Answered by 1549442205 last updated on 02/Jun/20

y=x^x ⇒lny=xlnx⇒((y′)/y)=lnx+1  ⇒y′=x^x (lnx+1)=0⇔lnx=−1  ⇔x=e^(−1) .y′′=(x^x /x)+(lnx+1).x^x (lnx+1)  =x^x ((1/x)+(lnx+1)^2 ).y”(e^(−1) )=  e^(−e^(−1) ) .e=e^(1−e^(−1) ) >0.Hence  miny=minf(x)=f(e^(−1) )=e^(−e^(−1) )

y=xxlny=xlnxyy=lnx+1y=xx(lnx+1)=0lnx=1x=e1.y=xxx+(lnx+1).xx(lnx+1)=xx(1x+(lnx+1)2).y(e1)=ee1.e=e1e1>0.Henceminy=minf(x)=f(e1)=ee1

Commented by  M±th+et+s last updated on 03/Jun/20

nice work

nicework

Terms of Service

Privacy Policy

Contact: info@tinkutara.com