Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 96593 by mathmax by abdo last updated on 03/Jun/20

let f(x) =arctan(x^n ) with n integr natural  1) calculate f^′ (x) and f^((2)) (x)  2) calculate f^((n)) (x) and f^((n)) (0)  3)developp f at integr serie

letf(x)=arctan(xn)withnintegrnatural1)calculatef(x)andf(2)(x)2)calculatef(n)(x)andf(n)(0)3)developpfatintegrserie

Answered by mathmax by abdo last updated on 03/Jun/20

1) we have f(x) =arctan(x^n ) ⇒f^′ (x) =((nx^(n−1) )/(1+x^(2n) ))  f^(′′) (x) =((n(n−1)x^(n−2) (1+x^(2n) )−2n x^(2n−1) .nx^(n−1) )/((1+x^(2n) )^2 ))  =((n(n−1)x^(n−2)  +n(n−1)x^(3n−2)  −2n^2  x^(3n−2) )/((1+x^(2n) )^2 ))  =((n(n−1)x^(n−2)  +(n^2 −n−2n^2 )x^(3n−2) )/((1+x^(2n) )^2 )) =((n(n−1)x^(n−2)  −(n+n^2 )x^(3n−2) )/((1+x^(2n) )^2 ))

1)wehavef(x)=arctan(xn)f(x)=nxn11+x2nf(x)=n(n1)xn2(1+x2n)2nx2n1.nxn1(1+x2n)2=n(n1)xn2+n(n1)x3n22n2x3n2(1+x2n)2=n(n1)xn2+(n2n2n2)x3n2(1+x2n)2=n(n1)xn2(n+n2)x3n2(1+x2n)2

Answered by mathmax by abdo last updated on 03/Jun/20

2)we have f^′ (x) =((nx^(n−1) )/(1+x^(2n) )) poles of f^(′?)   x^(2n)  +1 =0 ⇒x^(2n)  =e^(i(2k+1)π)  ⇒x_k =e^(i(((2k+1)π)/(2n)))     k∈[[0,2n−1]]  ⇒f^′ (x) =((nx^(n−1) )/(Π_(k=0) ^(2n−1) (x−x_k ))) =Σ_(k=0) ^(2n−1)  (a_k /(x−x_k ))    ,  a_k =((nx_k ^(n−1) )/(2n x_k ^(2n−1) )) =(1/2)×(x_k ^n /((−1)))  =−(1/2) e^(i(((2k+1)π)/2))  ⇒f^′ (x) =−(1/2) Σ_(k=0) ^(2n−1)  (e^(i(((2k+1)π)/2))) /(x−x_k )) ⇒  f^((p)) (x) =−(1/2) Σ_(k=0) ^(2n−1)  e^(i(πk +(π/2)))  {(1/(x−x_k ))}^((p−1))   =−(1/2)Σ_(k=0) ^(2n−1)  i(−1)^k ×(((−1)^(p−1)  (p−1)!)/((x−x_k )^p ))  =((i(−1)^p (p−1)!)/2) Σ_(k=0) ^(2n−1)  (((−1)^k )/((x−x_k )^p ))  p=n ⇒f^((n)) (x) =(i/2)(−1)^n (n−1)!Σ_(k=0) ^(2n−1)  (((−1)^k )/((x−x_k )^n ))  f^((n)) (0) =(i/2)(−1)^n (n−1)! Σ_(k=0) ^(2n−1)  (((−1)^k )/((−1)^n  x_k ^n ))  =(i/2)(n−1)! Σ_(k=0) ^(2n−1)  (((−1)^k )/(i(−1)^k )) =(1/2) Σ_(k=0) ^(2n−1) (1) =n ⇒f^((n)) (0) =n

2)wehavef(x)=nxn11+x2npolesoff?x2n+1=0x2n=ei(2k+1)πxk=ei(2k+1)π2nk[[0,2n1]]f(x)=nxn1k=02n1(xxk)=k=02n1akxxk,ak=nxkn12nxk2n1=12×xkn(1)=12ei(2k+1)π2f(x)=12k=02n1ei(2k+1)π2)xxkf(p)(x)=12k=02n1ei(πk+π2){1xxk}(p1)=12k=02n1i(1)k×(1)p1(p1)!(xxk)p=i(1)p(p1)!2k=02n1(1)k(xxk)pp=nf(n)(x)=i2(1)n(n1)!k=02n1(1)k(xxk)nf(n)(0)=i2(1)n(n1)!k=02n1(1)k(1)nxkn=i2(n1)!k=02n1(1)ki(1)k=12k=02n1(1)=nf(n)(0)=n

Commented by mathmax by abdo last updated on 03/Jun/20

3) f(x) =Σ_(p=0) ^∞  ((f^((p)) (0))/(p!)) x^p  =Σ_(p=1) ^∞  (1/(p!)){(i/2)(−1)^p (p−1)! Σ_(k=0) ^(2n−1)  (((−1)^k )/((−1)^p  x_k ^p ))}x^p   =(i/2) Σ_(p=1) ^∞ ( (1/p) Σ_(k=0) ^(2n−1) (−1)^k  x_k ^(−p) )x^p    with x_k =e^(i(((2k+1)π)/(2n))))

3)f(x)=p=0f(p)(0)p!xp=p=11p!{i2(1)p(p1)!k=02n1(1)k(1)pxkp}xp=i2p=1(1pk=02n1(1)kxkp)xpwithxk=ei(2k+1)π2n)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com