Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 96602 by Ar Brandon last updated on 03/Jun/20

lim_(n→+∞) (1/(√n)) Σ_(k=1) ^n (√k)

$$\underset{\mathrm{n}\rightarrow+\infty} {\mathrm{lim}}\frac{\mathrm{1}}{\sqrt{\mathrm{n}}}\:\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\sqrt{\mathrm{k}} \\ $$

Answered by Sourav mridha last updated on 03/Jun/20

by inspection Σ_(k=1) ^n (√(k )) this is a  diverging series as n⇒∞.     proof:            using Eular−Maclaurin  integration formula....     Σ_(k=1) ^n (√k) =[((16n^2 +12n−5(√n) +1)/(24(√n)))]  approximate result..but okkk..  now,lim_(n→∞) (1/(√n))Σ_(k=1) ^n (√k)                 =lim_(n→∞) [((16n+12−(5/(√n))+(1/n))/(24))]             =∞..

$$\boldsymbol{{by}}\:\boldsymbol{{inspection}}\:\underset{\boldsymbol{{k}}=\mathrm{1}} {\overset{\boldsymbol{{n}}} {\sum}}\sqrt{\boldsymbol{{k}}\:}\:\boldsymbol{{this}}\:\boldsymbol{{is}}\:\boldsymbol{{a}} \\ $$$$\boldsymbol{{diverging}}\:\boldsymbol{{series}}\:\boldsymbol{{as}}\:\boldsymbol{{n}}\Rightarrow\infty. \\ $$$$\: \\ $$$$\boldsymbol{{proof}}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\boldsymbol{{using}}\:\boldsymbol{{E}}\mathrm{ular}−\boldsymbol{{Maclaurin}} \\ $$$$\boldsymbol{{integration}}\:\boldsymbol{{formula}}.... \\ $$$$\:\:\:\underset{\boldsymbol{{k}}=\mathrm{1}} {\overset{\boldsymbol{{n}}} {\sum}}\sqrt{\boldsymbol{{k}}}\:=\left[\frac{\mathrm{16}\boldsymbol{{n}}^{\mathrm{2}} +\mathrm{12}\boldsymbol{{n}}−\mathrm{5}\sqrt{\boldsymbol{{n}}}\:+\mathrm{1}}{\mathrm{24}\sqrt{\boldsymbol{{n}}}}\right] \\ $$$$\boldsymbol{{approximate}}\:\boldsymbol{{result}}..\boldsymbol{{but}}\:\boldsymbol{{okkk}}.. \\ $$$$\boldsymbol{{now}},\underset{\boldsymbol{{n}}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{\sqrt{\boldsymbol{{n}}}}\underset{\boldsymbol{{k}}=\mathrm{1}} {\overset{\boldsymbol{{n}}} {\sum}}\sqrt{\boldsymbol{{k}}}\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\underset{\boldsymbol{{n}}\rightarrow\infty} {\mathrm{lim}}\left[\frac{\mathrm{16}\boldsymbol{{n}}+\mathrm{12}−\frac{\mathrm{5}}{\sqrt{\boldsymbol{{n}}}}+\frac{\mathrm{1}}{\boldsymbol{{n}}}}{\mathrm{24}}\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\infty.. \\ $$

Answered by mathmax by abdo last updated on 03/Jun/20

S_n =(1/(√n))Σ_(k=1) ^n  (√k) ⇒S_n =Σ_(k=1) ^n (√(k/n))=n×(1/n)Σ_(k=1) ^n (√(k/n))  but lim_(n→+∞) (1/n)(√(k/n))=∫_0 ^1 (√x)dx =∫_0 ^1  x^(1/2)  dx =[(2/3)x^(3/2) ]_0 ^1  =(2/3) ⇒  lim_(n→+∞)  S_n =lim_(n→+∞) ((2n)/3) =+∞

$$\mathrm{S}_{\mathrm{n}} =\frac{\mathrm{1}}{\sqrt{\mathrm{n}}}\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \:\sqrt{\mathrm{k}}\:\Rightarrow\mathrm{S}_{\mathrm{n}} =\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \sqrt{\frac{\mathrm{k}}{\mathrm{n}}}=\mathrm{n}×\frac{\mathrm{1}}{\mathrm{n}}\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \sqrt{\frac{\mathrm{k}}{\mathrm{n}}} \\ $$$$\mathrm{but}\:\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \frac{\mathrm{1}}{\mathrm{n}}\sqrt{\frac{\mathrm{k}}{\mathrm{n}}}=\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{x}}\mathrm{dx}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\mathrm{x}^{\frac{\mathrm{1}}{\mathrm{2}}} \:\mathrm{dx}\:=\left[\frac{\mathrm{2}}{\mathrm{3}}\mathrm{x}^{\frac{\mathrm{3}}{\mathrm{2}}} \right]_{\mathrm{0}} ^{\mathrm{1}} \:=\frac{\mathrm{2}}{\mathrm{3}}\:\Rightarrow \\ $$$$\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \:\mathrm{S}_{\mathrm{n}} =\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \frac{\mathrm{2n}}{\mathrm{3}}\:=+\infty \\ $$

Answered by maths mind last updated on 03/Jun/20

(√k)≥1  ⇒(1/(√n))Σ_(k=1) ^n (√k)≥(n/(√n))=(√n)

$$\sqrt{{k}}\geqslant\mathrm{1} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\sqrt{{n}}}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\sqrt{{k}}\geqslant\frac{{n}}{\sqrt{{n}}}=\sqrt{{n}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com