Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 96667 by Ar Brandon last updated on 03/Jun/20

Prove  that  Σ_(k=1) ^∞ (1/k^2 )=(π^2 /6)

$$\mathcal{P}\mathrm{rove}\:\:\mathrm{that}\:\:\underset{\mathrm{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{k}^{\mathrm{2}} }=\frac{\pi^{\mathrm{2}} }{\mathrm{6}} \\ $$

Answered by Sourav mridha last updated on 03/Jun/20

Σ_(k=1) ^∞ k^(−2) =𝛇(2)  from the relation of Riemann  zeta f^n  with Burnoulli number  (even).         B_(2n) =(−1)^(n−1) ((2(2n)!)/((2𝛑)^(2n) )).𝛇(2n).       put..n=1      then,B_2 =((2.2!)/(2.2.𝛑^2  )).𝛇(2)  we know B_2 =(1/6).now putting it  we get..𝛇(2)=(𝛑^2 /6)...

$$\underset{\boldsymbol{{k}}=\mathrm{1}} {\overset{\infty} {\sum}}\boldsymbol{{k}}^{−\mathrm{2}} =\boldsymbol{\zeta}\left(\mathrm{2}\right) \\ $$$$\boldsymbol{{f}}\mathrm{ro}\boldsymbol{{m}}\:\boldsymbol{{the}}\:\boldsymbol{{relation}}\:\boldsymbol{{of}}\:\boldsymbol{{Ri}}\mathrm{e}\boldsymbol{{mann}} \\ $$$$\boldsymbol{{zeta}}\:\boldsymbol{{f}}^{\boldsymbol{{n}}} \:\boldsymbol{{with}}\:\boldsymbol{{Burnoulli}}\:\boldsymbol{{number}} \\ $$$$\left(\boldsymbol{{even}}\right). \\ $$$$\:\:\:\:\:\:\:\boldsymbol{{B}}_{\mathrm{2}\boldsymbol{{n}}} =\left(−\mathrm{1}\right)^{\boldsymbol{{n}}−\mathrm{1}} \frac{\mathrm{2}\left(\mathrm{2}\boldsymbol{{n}}\right)!}{\left(\mathrm{2}\boldsymbol{\pi}\right)^{\mathrm{2}\boldsymbol{{n}}} }.\boldsymbol{\zeta}\left(\mathrm{2}\boldsymbol{{n}}\right). \\ $$$$\:\:\:\:\:\boldsymbol{{put}}..\boldsymbol{{n}}=\mathrm{1} \\ $$$$\:\:\:\:\boldsymbol{{then}},\boldsymbol{{B}}_{\mathrm{2}} =\frac{\mathrm{2}.\mathrm{2}!}{\mathrm{2}.\mathrm{2}.\boldsymbol{\pi}^{\mathrm{2}} \:}.\boldsymbol{\zeta}\left(\mathrm{2}\right) \\ $$$$\boldsymbol{{we}}\:\boldsymbol{{know}}\:\boldsymbol{{B}}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{6}}.\boldsymbol{{now}}\:\boldsymbol{{putting}}\:\boldsymbol{{it}} \\ $$$$\boldsymbol{{we}}\:\boldsymbol{{get}}..\boldsymbol{\zeta}\left(\mathrm{2}\right)=\frac{\boldsymbol{\pi}^{\mathrm{2}} }{\mathrm{6}}... \\ $$

Commented by I want to learn more last updated on 05/Jun/20

sir what of    ζ(2n  +  1)   for  odd

$$\mathrm{sir}\:\mathrm{what}\:\mathrm{of}\:\:\:\:\zeta\left(\mathrm{2}\boldsymbol{\mathrm{n}}\:\:+\:\:\mathrm{1}\right)\:\:\:\boldsymbol{\mathrm{for}}\:\:\boldsymbol{\mathrm{odd}} \\ $$

Commented by Sourav mridha last updated on 05/Jun/20

This is not justified by this   formula because:     B_(2n+1) =0 where n∈N  only odd number B_1 =−(1/2) exist.        generel form of B_n :         B_n =−((n!)/((2𝛑i)^n ))[Σ_(m=1) ^∞ ((1/m^n )+(1/((−m)^n )))]

$$\boldsymbol{{T}}\mathrm{his}\:\boldsymbol{{is}}\:\boldsymbol{{not}}\:\boldsymbol{{justified}}\:\boldsymbol{{by}}\:\boldsymbol{{this}}\: \\ $$$$\boldsymbol{{formula}}\:\boldsymbol{{because}}: \\ $$$$\:\:\:\boldsymbol{{B}}_{\mathrm{2}\boldsymbol{{n}}+\mathrm{1}} =\mathrm{0}\:\boldsymbol{{where}}\:\boldsymbol{{n}}\in\mathbb{N} \\ $$$$\boldsymbol{{only}}\:\boldsymbol{{odd}}\:\boldsymbol{{number}}\:\boldsymbol{{B}}_{\mathrm{1}} =−\frac{\mathrm{1}}{\mathrm{2}}\:\boldsymbol{{exist}}. \\ $$$$\:\:\:\:\:\:\boldsymbol{{generel}}\:\boldsymbol{{form}}\:\boldsymbol{{of}}\:\boldsymbol{{B}}_{\boldsymbol{{n}}} : \\ $$$$\:\:\:\:\:\:\:\boldsymbol{{B}}_{\boldsymbol{{n}}} =−\frac{\boldsymbol{{n}}!}{\left(\mathrm{2}\boldsymbol{\pi{i}}\right)^{\boldsymbol{{n}}} }\left[\underset{\mathrm{m}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{\boldsymbol{{m}}^{\boldsymbol{{n}}} }+\frac{\mathrm{1}}{\left(−\boldsymbol{{m}}\right)^{\boldsymbol{{n}}} }\right)\right]\: \\ $$$$\:\: \\ $$$$ \\ $$

Commented by I want to learn more last updated on 06/Jun/20

Thanks sir

$$\mathrm{Thanks}\:\mathrm{sir} \\ $$

Answered by Rio Michael last updated on 03/Jun/20

i′ve always Wanted to Get this proof..and here′s what i fell on.  Σ_(k=1) ^∞ (1/k^2 ) = (π^2 /6)  first let s = arcsin x   hence  ∫_0 ^(π/2)  s ds = (π^2 /8)  also ∫_0 ^1  ((arcsin x)/(√(1−x^2 ))) dx = (π^2 /8)  since  arc sin x = ∫_0 ^1 (1/((√(1−x^2 )) )) dx = x + (x^3 /(2 ×3))  + ((1 × 3 x^5 )/(2 ×5 ×5)) +...   substituting we get: ∫_0 ^1 ((dx/(√(1−x^2 ))) ∫(dx/(√(1−x^2 )))) = ∫_0 ^1 [x + (x^3 /6)((dx/(√(1−x^2 ))))+...]  realise that : ∫_0 ^1  (x^(2n+1) /(√(1−x^2 ))) dx = ((2n!!)/((2n + 1)!!)). since we get all odd powers,        (π^2 /8) = Σ_(k=1) ^∞ (1/((2n−1)^2 ))  if we define x = Σ_(k=1) ^∞ (1/k^2 )  dividing by 4 , we get the equation: x = (π^2 /6) = Σ_(k=1) ^∞ (1/k^2 )  please guys check.

$$\mathrm{i}'\mathrm{ve}\:\mathrm{always}\:\mathcal{W}\mathrm{anted}\:\mathrm{to}\:\mathcal{G}\mathrm{et}\:\mathrm{this}\:\mathrm{proof}..\mathrm{and}\:\mathrm{here}'\mathrm{s}\:\mathrm{what}\:\mathrm{i}\:\mathrm{fell}\:\mathrm{on}. \\ $$$$\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{k}^{\mathrm{2}} }\:=\:\frac{\pi^{\mathrm{2}} }{\mathrm{6}} \\ $$$$\mathrm{first}\:\mathrm{let}\:{s}\:=\:\mathrm{arcsin}\:{x}\: \\ $$$$\mathrm{hence}\:\:\overset{\frac{\pi}{\mathrm{2}}} {\int}_{\mathrm{0}} \:{s}\:{ds}\:=\:\frac{\pi^{\mathrm{2}} }{\mathrm{8}} \\ $$$$\mathrm{also}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{arcsin}\:{x}}{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:{dx}\:=\:\frac{\pi^{\mathrm{2}} }{\mathrm{8}} \\ $$$$\mathrm{since}\:\:\mathrm{arc}\:\mathrm{sin}\:{x}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:}\:{dx}\:=\:{x}\:+\:\frac{{x}^{\mathrm{3}} }{\mathrm{2}\:×\mathrm{3}}\:\:+\:\frac{\mathrm{1}\:×\:\mathrm{3}\:{x}^{\mathrm{5}} }{\mathrm{2}\:×\mathrm{5}\:×\mathrm{5}}\:+...\: \\ $$$$\mathrm{substituting}\:\mathrm{we}\:\mathrm{get}:\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\frac{{dx}}{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:\int\frac{{dx}}{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\right)\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \left[{x}\:+\:\frac{{x}^{\mathrm{3}} }{\mathrm{6}}\left(\frac{{dx}}{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\right)+...\right] \\ $$$$\mathrm{realise}\:\mathrm{that}\::\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{x}^{\mathrm{2}{n}+\mathrm{1}} }{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:{dx}\:=\:\frac{\mathrm{2}{n}!!}{\left(\mathrm{2}{n}\:+\:\mathrm{1}\right)!!}.\:\mathrm{since}\:\mathrm{we}\:\mathrm{get}\:\mathrm{all}\:\mathrm{odd}\:\mathrm{powers}, \\ $$$$\:\:\:\:\:\:\frac{\pi^{\mathrm{2}} }{\mathrm{8}}\:=\:\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{2}{n}−\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\mathrm{if}\:\mathrm{we}\:\mathrm{define}\:{x}\:=\:\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{k}^{\mathrm{2}} } \\ $$$$\mathrm{dividing}\:\mathrm{by}\:\mathrm{4}\:,\:\mathrm{we}\:\mathrm{get}\:\mathrm{the}\:\mathrm{equation}:\:{x}\:=\:\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\:=\:\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{k}^{\mathrm{2}} } \\ $$$$\mathrm{please}\:\mathrm{guys}\:\mathrm{check}. \\ $$

Commented by Ar Brandon last updated on 03/Jun/20

I'm lost.��

Commented by I want to learn more last updated on 06/Jun/20

thanks sir

$$\mathrm{thanks}\:\mathrm{sir} \\ $$

Commented by I want to learn more last updated on 06/Jun/20

sir, will this method get:   Σ_(k = 1) ^∞ (1/k^3 )

$$\mathrm{sir},\:\mathrm{will}\:\mathrm{this}\:\mathrm{method}\:\mathrm{get}:\:\:\:\underset{\mathrm{k}\:=\:\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{k}^{\mathrm{3}} } \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com