Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 96684 by Ar Brandon last updated on 03/Jun/20

lim_(n→+∞) Σ_(k=1) ^n ((n+k)/(n^2 +k^2 ))  {Reimann′s  integral  may  help}

$$\underset{\mathrm{n}\rightarrow+\infty} {\mathrm{lim}}\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{n}+\mathrm{k}}{\mathrm{n}^{\mathrm{2}} +\mathrm{k}^{\mathrm{2}} } \\ $$$$\left\{\mathrm{Reimann}'\mathrm{s}\:\:\mathrm{integral}\:\:\mathrm{may}\:\:\mathrm{help}\right\} \\ $$

Answered by Sourav mridha last updated on 03/Jun/20

lim_(n+∞)  (1/n)Σ_(k=1) ^n ((1+(k/n))/(1+((k/n))^2 ))=∫_0 ^1 ((1+x)/(1+x^2 ))dx        =∫_0 ^1 (dx/(1+x^2 )) +∫_0 ^1 (x/(1+x^2 ))dx        =(𝛑/4) +(1/2).ln(2).

$$\underset{\boldsymbol{{n}}+\infty} {\mathrm{lim}}\:\frac{\mathrm{1}}{\boldsymbol{{n}}}\underset{\boldsymbol{{k}}=\mathrm{1}} {\overset{\boldsymbol{{n}}} {\sum}}\frac{\mathrm{1}+\frac{\boldsymbol{{k}}}{\boldsymbol{{n}}}}{\mathrm{1}+\left(\frac{\boldsymbol{{k}}}{\boldsymbol{{n}}}\right)^{\mathrm{2}} }=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}+\boldsymbol{{x}}}{\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} }\boldsymbol{{dx}} \\ $$$$\:\:\:\:\:\:=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\boldsymbol{{dx}}}{\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} }\:+\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\boldsymbol{{x}}}{\mathrm{1}+\boldsymbol{{x}}^{\mathrm{2}} }\boldsymbol{{dx}} \\ $$$$\:\:\:\:\:\:=\frac{\boldsymbol{\pi}}{\mathrm{4}}\:+\frac{\mathrm{1}}{\mathrm{2}}.\boldsymbol{{ln}}\left(\mathrm{2}\right). \\ $$

Commented by Ar Brandon last updated on 03/Jun/20

cool, thanks

Answered by mathmax by abdo last updated on 03/Jun/20

let A_n =Σ_(n=1) ^∞  ((n+k)/(n^2  +k^2 )) ⇒ A_n =(1/n)Σ_(n=1) ^∞  ((1+(k/n))/(1+((k/n))^2 )) so A_n is Rieman sum and  lim_(n→+∞)  A_n =∫_0 ^1  ((1+x)/(1+x^2 ))dx =∫_0 ^1  (dx/(1+x^2 )) +∫_0 ^1  ((xdx)/(1+x^2 )) =[arctanx]_0 ^1  +[(1/2)ln(1+x^2 )]_0 ^1   =(π/4) +((ln2)/2)

$$\mathrm{let}\:\mathrm{A}_{\mathrm{n}} =\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{n}+\mathrm{k}}{\mathrm{n}^{\mathrm{2}} \:+\mathrm{k}^{\mathrm{2}} }\:\Rightarrow\:\mathrm{A}_{\mathrm{n}} =\frac{\mathrm{1}}{\mathrm{n}}\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}+\frac{\mathrm{k}}{\mathrm{n}}}{\mathrm{1}+\left(\frac{\mathrm{k}}{\mathrm{n}}\right)^{\mathrm{2}} }\:\mathrm{so}\:\mathrm{A}_{\mathrm{n}} \mathrm{is}\:\mathrm{Rieman}\:\mathrm{sum}\:\mathrm{and} \\ $$$$\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \:\mathrm{A}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{1}+\mathrm{x}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\mathrm{dx}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{dx}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:+\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\mathrm{xdx}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:=\left[\mathrm{arctanx}\right]_{\mathrm{0}} ^{\mathrm{1}} \:+\left[\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$=\frac{\pi}{\mathrm{4}}\:+\frac{\mathrm{ln2}}{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com