All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 96693 by 175 last updated on 03/Jun/20
Answered by abdomathmax last updated on 04/Jun/20
An=∫dx1+tannx=tanx=t∫dt(1+t2)(1+tn)letdecomposeF(t)=1(t2+1)(tn+1)=1(t−i(t+i)(tn+1)⇒F(t)=at−i+bt+i+∑p=0n−1apt−zpzprootsoftn+1=0⇒zp=ei(2k+1)πpp∈[[0,n−1]]a=12i(1+in)andb=−12i(1+(−i)n)⇒F(t)=12i(in+1)(t−i)−12i(1+(−i)n)(t+i)+∑p=0n−1apt−zp=12i{(1+(−i)n)(t+i)−(1+in)(t−i)(1+in)(1+(−1)n)(t2+1)}+∑p=0n−1apt−zp=αt+βt2+1+∑p=0n−1apt−zp⇒1(t2+1)(tn+1)−αt+βt2+1=∑p=0n−1apt−zp⇒1(t2+1){1tn+1−(αt+β)}=Σ(...)⇒1−(αt+β)(tn+1)(t2+1)(tn+1)=∑p=0∞apt−zpap=f(zp)g′(zp)wehavef(zp)=1−(αzp+β)(zpn+1)(zp2+1)(zpn+1)g(t)=tn+2+t2+tn+1⇒g′(t)=(n+2)tn+1+ntn−1+2t⇒g′(zp)=(n+2)zpn+1+nzpn−1+2zp⇒∫F(t)dt=aln(t−i)+bln(t+i)+∑p=0n−1apln(t−zp)+C
Commented by 175 last updated on 04/Jun/20
nice
Commented by mathmax by abdo last updated on 04/Jun/20
thankx
Terms of Service
Privacy Policy
Contact: info@tinkutara.com