Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 96693 by 175 last updated on 03/Jun/20

Answered by abdomathmax last updated on 04/Jun/20

A_n =∫  (dx/(1+tan^n x)) =_(tanx =t)     ∫  (dt/((1+t^2 )(1+t^n )))  let decompose F(t) =(1/((t^2 +1)(t^n  +1))) =(1/((t−i(t+i)(t^n  +1)))  ⇒F(t) =(a/(t−i)) +(b/(t+i)) +Σ_(p=0) ^(n−1)  (a_p /(t−z_p ))  z_p  roots of  t^n  +1=0 ⇒z_p =e^(i(((2k+1)π)/p))   p ∈[[0,n−1]]  a =(1/(2i(1+i^n ))) and b =((−1)/(2i(1+(−i)^n ))) ⇒  F(t)=(1/(2i(i^n +1)(t−i))) −(1/(2i(1+(−i)^n )(t+i))) +Σ_(p=0) ^(n−1)  (a_p /(t−z_p ))  =(1/(2i)){(((1+(−i)^n )(t+i)−(1+i^n )(t−i))/((1+i^n )(1+(−1)^n )(t^2  +1)))}  +Σ_(p=0) ^(n−1)  (a_p /(t−z_p ))  =((αt +β)/(t^2  +1)) +Σ_(p=0) ^(n−1)  (a_p /(t−z_p )) ⇒  (1/((t^2 +1)(t^n  +1)))−((αt+β)/(t^2  +1)) =Σ_(p=0) ^(n−1)  (a_p /(t−z_p )) ⇒  (1/((t^2  +1))){(1/(t^n +1))−(αt +β)} =Σ(...) ⇒  ((1−(αt +β)(t^n  +1))/((t^2 +1)(t^n  +1))) =Σ_(p=0) ^∞  (a_p /(t−z_p ))  a_p =((f(z_(p)) )/(g^′ (z_p )))   we have f(z_p ) =((1−(αz_p +β)(z_p ^n  +1))/((z_p ^2  +1)(z_p ^n  +1)))  g(t) =t^(n+2)  +t^2  +t^n  +1 ⇒  g^′ (t) =(n+2)t^(n+1)  +nt^(n−1)  +2t ⇒  g^′ (z_p ) =(n+2)z_p ^(n+1)  +nz_p ^(n−1)  +2z_p  ⇒  ∫ F(t)dt =aln(t−i)+bln(t+i)+Σ_(p=0) ^(n−1) a_p ln(t−z_p ) +C

An=dx1+tannx=tanx=tdt(1+t2)(1+tn)letdecomposeF(t)=1(t2+1)(tn+1)=1(ti(t+i)(tn+1)F(t)=ati+bt+i+p=0n1aptzpzprootsoftn+1=0zp=ei(2k+1)πpp[[0,n1]]a=12i(1+in)andb=12i(1+(i)n)F(t)=12i(in+1)(ti)12i(1+(i)n)(t+i)+p=0n1aptzp=12i{(1+(i)n)(t+i)(1+in)(ti)(1+in)(1+(1)n)(t2+1)}+p=0n1aptzp=αt+βt2+1+p=0n1aptzp1(t2+1)(tn+1)αt+βt2+1=p=0n1aptzp1(t2+1){1tn+1(αt+β)}=Σ(...)1(αt+β)(tn+1)(t2+1)(tn+1)=p=0aptzpap=f(zp)g(zp)wehavef(zp)=1(αzp+β)(zpn+1)(zp2+1)(zpn+1)g(t)=tn+2+t2+tn+1g(t)=(n+2)tn+1+ntn1+2tg(zp)=(n+2)zpn+1+nzpn1+2zpF(t)dt=aln(ti)+bln(t+i)+p=0n1apln(tzp)+C

Commented by 175 last updated on 04/Jun/20

nice

Commented by mathmax by abdo last updated on 04/Jun/20

thankx

thankx

Terms of Service

Privacy Policy

Contact: info@tinkutara.com