Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 96729 by qwertasdf last updated on 04/Jun/20

Prove that ln∣sec(x)+tan(x)∣=tanh^(−1) (sin(x))

$${Prove}\:{that}\:\mathrm{ln}\mid\mathrm{sec}\left({x}\right)+\mathrm{tan}\left({x}\right)\mid=\mathrm{tanh}^{−\mathrm{1}} \left(\mathrm{sin}\left({x}\right)\right) \\ $$

Commented by prakash jain last updated on 04/Jun/20

tanh^(−1) (x)=ln (((1+x)/(1−x)))^(1/2)   tanh^(−1) (sin (x))=ln ((1+sin x)/(1−sin x))  When sin x≠1  ln( ((1+sin x)/(1−sin x))×((1+sin x)/(1+sin x)))^(1/2)   ln (((1+2sin x+sin^2 x)/(1−sin^2 x)))^(1/2)   =ln ((1/(cos^2 x))+2tan xsec x+tan^2 x)^(1/2)   =ln ((sec x+tan x)^2 )^(1/2)   =ln ∣sec x+tan x∣  equality only valid when sin x≠1

$$\mathrm{tanh}^{−\mathrm{1}} \left({x}\right)=\mathrm{ln}\:\left(\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}\right)^{\mathrm{1}/\mathrm{2}} \\ $$$$\mathrm{tanh}^{−\mathrm{1}} \left(\mathrm{sin}\:\left({x}\right)\right)=\mathrm{ln}\:\frac{\mathrm{1}+\mathrm{sin}\:{x}}{\mathrm{1}−\mathrm{sin}\:{x}} \\ $$$$\mathrm{When}\:\mathrm{sin}\:{x}\neq\mathrm{1} \\ $$$$\mathrm{ln}\left(\:\frac{\mathrm{1}+\mathrm{sin}\:{x}}{\mathrm{1}−\mathrm{sin}\:{x}}×\frac{\mathrm{1}+\mathrm{sin}\:{x}}{\mathrm{1}+\mathrm{sin}\:{x}}\right)^{\mathrm{1}/\mathrm{2}} \\ $$$$\mathrm{ln}\:\left(\frac{\mathrm{1}+\mathrm{2sin}\:{x}+\mathrm{sin}^{\mathrm{2}} {x}}{\mathrm{1}−\mathrm{sin}^{\mathrm{2}} {x}}\right)^{\mathrm{1}/\mathrm{2}} \\ $$$$=\mathrm{ln}\:\left(\frac{\mathrm{1}}{\mathrm{cos}^{\mathrm{2}} {x}}+\mathrm{2tan}\:{x}\mathrm{sec}\:{x}+\mathrm{tan}^{\mathrm{2}} {x}\right)^{\mathrm{1}/\mathrm{2}} \\ $$$$=\mathrm{ln}\:\left(\left(\mathrm{sec}\:{x}+\mathrm{tan}\:{x}\right)^{\mathrm{2}} \right)^{\mathrm{1}/\mathrm{2}} \\ $$$$=\mathrm{ln}\:\mid\mathrm{sec}\:{x}+\mathrm{tan}\:{x}\mid \\ $$$$\mathrm{equality}\:\mathrm{only}\:\mathrm{valid}\:\mathrm{when}\:\mathrm{sin}\:{x}\neq\mathrm{1} \\ $$

Answered by Ar Brandon last updated on 04/Jun/20

Let; u=ln∣secx+tanx∣⇒(du/dx)=secx            v=tanh^(−1) (sinx)⇒(dv/dx)=((cosx)/(1−sin^2 x))               =((cosx)/(cos^2 x))=secx  ⇒u=v

$$\mathcal{L}\mathrm{et};\:\mathrm{u}=\mathrm{ln}\mid\mathrm{secx}+\mathrm{tanx}\mid\Rightarrow\frac{\mathrm{du}}{\mathrm{dx}}=\mathrm{secx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{v}=\mathrm{tanh}^{−\mathrm{1}} \left(\mathrm{sinx}\right)\Rightarrow\frac{\mathrm{dv}}{\mathrm{dx}}=\frac{\mathrm{cosx}}{\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \mathrm{x}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{cosx}}{\mathrm{cos}^{\mathrm{2}} \mathrm{x}}=\mathrm{secx} \\ $$$$\Rightarrow\mathrm{u}=\mathrm{v} \\ $$

Commented by Ar Brandon last updated on 04/Jun/20

But in this case the constants are all 0  I feel that makes a difference. What do  you think Sir?

$$\mathrm{But}\:\mathrm{in}\:\mathrm{this}\:\mathrm{case}\:\mathrm{the}\:\mathrm{constants}\:\mathrm{are}\:\mathrm{all}\:\mathrm{0} \\ $$$$\mathcal{I}\:\mathrm{feel}\:\mathrm{that}\:\mathrm{makes}\:\mathrm{a}\:\mathrm{difference}.\:\mathrm{What}\:\mathrm{do} \\ $$$$\mathrm{you}\:\mathrm{think}\:\mathrm{Sir}? \\ $$

Commented by prakash jain last updated on 04/Jun/20

(du/dx)=(dv/dx)⇏u=v  ex:  u=x^2 +c  v=x^2

$$\frac{{du}}{{dx}}=\frac{{dv}}{{dx}}\nRightarrow{u}={v} \\ $$$${ex}: \\ $$$${u}={x}^{\mathrm{2}} +{c} \\ $$$${v}={x}^{\mathrm{2}} \\ $$

Commented by prakash jain last updated on 04/Jun/20

But then you will need a formal  proof that there is no constant term.  For example function like cosx,e^x   have terms independent of x.

$$\mathrm{But}\:\mathrm{then}\:\mathrm{you}\:\mathrm{will}\:\mathrm{need}\:\mathrm{a}\:\mathrm{formal} \\ $$$$\mathrm{proof}\:\mathrm{that}\:\mathrm{there}\:\mathrm{is}\:\mathrm{no}\:\mathrm{constant}\:\mathrm{term}. \\ $$$$\mathrm{For}\:\mathrm{example}\:\mathrm{function}\:\mathrm{like}\:\mathrm{cos}{x},{e}^{{x}} \\ $$$$\mathrm{have}\:\mathrm{terms}\:\mathrm{independent}\:\mathrm{of}\:{x}. \\ $$

Commented by prakash jain last updated on 04/Jun/20

Also (sec(x)+tan (x)) has terms  independent of x.   ln∣sec x+tan x∣  does not have  terms independent of x.

$$\mathrm{Also}\:\left(\mathrm{sec}\left({x}\right)+\mathrm{tan}\:\left({x}\right)\right)\:\mathrm{has}\:\mathrm{terms} \\ $$$$\mathrm{independent}\:\mathrm{of}\:{x}.\: \\ $$$$\mathrm{ln}\mid\mathrm{sec}\:{x}+\mathrm{tan}\:{x}\mid\:\:\mathrm{does}\:\mathrm{not}\:\mathrm{have} \\ $$$$\mathrm{terms}\:\mathrm{independent}\:\mathrm{of}\:{x}. \\ $$

Commented by Ar Brandon last updated on 04/Jun/20

OK thanks Sir for your opinion. I tried a different  approach.

$$\mathrm{OK}\:\mathrm{thanks}\:\mathrm{Sir}\:\mathrm{for}\:\mathrm{your}\:\mathrm{opinion}.\:\mathrm{I}\:\mathrm{tried}\:\mathrm{a}\:\mathrm{different} \\ $$$$\mathrm{approach}. \\ $$

Commented by 1549442205 last updated on 05/Jun/20

Clearly,by your argument it follows that the equality  (du/dx)=(dv/dx) is simple a need condition to u=v but  it isn′t a enough condition to u=v

$$\mathrm{Clearly},\mathrm{by}\:\mathrm{your}\:\mathrm{argument}\:\mathrm{it}\:\mathrm{follows}\:\mathrm{that}\:\mathrm{the}\:\mathrm{equality} \\ $$$$\frac{\mathrm{du}}{\mathrm{dx}}=\frac{\mathrm{dv}}{\mathrm{dx}}\:\mathrm{is}\:\mathrm{simple}\:\mathrm{a}\:\mathrm{need}\:\mathrm{condition}\:\mathrm{to}\:\mathrm{u}=\mathrm{v}\:\mathrm{but} \\ $$$$\mathrm{it}\:\mathrm{isn}'\mathrm{t}\:\mathrm{a}\:\mathrm{enough}\:\mathrm{condition}\:\mathrm{to}\:\mathrm{u}=\mathrm{v} \\ $$

Answered by Ar Brandon last updated on 04/Jun/20

y=ln∣secx+tanx∣=ln∣((1+sinx)/(cosx))∣=(1/2)ln∣(((1+sinx)^2 )/(cos^2 x))∣     =(1/2)ln∣(((1+sinx)^2 )/(1−sin^2 x))∣=(1/2)ln∣(((1+sinx)^2 )/((1−sinx)(1+sinx)))∣     =(1/2)ln∣((1+sinx)/(1−sinx))∣=tanh^(−1) (sinx)

$$\mathrm{y}=\mathrm{ln}\mid\mathrm{secx}+\mathrm{tanx}\mid=\mathrm{ln}\mid\frac{\mathrm{1}+\mathrm{sinx}}{\mathrm{cosx}}\mid=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\mid\frac{\left(\mathrm{1}+\mathrm{sinx}\right)^{\mathrm{2}} }{\mathrm{cos}^{\mathrm{2}} \mathrm{x}}\mid \\ $$$$\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\mid\frac{\left(\mathrm{1}+\mathrm{sinx}\right)^{\mathrm{2}} }{\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \mathrm{x}}\mid=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\mid\frac{\left(\mathrm{1}+\mathrm{sinx}\right)^{\mathrm{2}} }{\left(\mathrm{1}−\mathrm{sinx}\right)\left(\mathrm{1}+\mathrm{sinx}\right)}\mid \\ $$$$\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\mid\frac{\mathrm{1}+\mathrm{sinx}}{\mathrm{1}−\mathrm{sinx}}\mid=\mathrm{tanh}^{−\mathrm{1}} \left(\mathrm{sinx}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com